Dr. Michael B. Leahy, Jr.
Air Force Material Command
Robotics and Automation Center of Excellence
SA-ALC/TIEST
KAFB, TX 78241-5000
210-925-3711
mleahy@sadis05.kelly.af.mil

Managing Editor: Ms. Rosalyn Snyder
7621 Penland Drive, Clemmons NC 27012
919-766-6210, roz@relito.medeng.wfu.edu

Society President: Dr. T. J. Tarn,
Washington University
1993 Conference Chair: Prof. Wayne Book,
Georgia Institute of Technology

Associate Editors
Prof. A. C. Kak, Purdue University
Dr. Thomas C. Henderson, University of Utah
Dr. John Baillieul, Boston University

In This Issue

President’s Message T.J. Tarn 3
From the Editor’s Desk, M. Leahy 4
Where Are the Home Robots, B. Smallridge 5
Experimental Robotics Symposia, V. Hayward & O. Khatib 6
1992 IEEE International Symposium on Intelligent Control, E. Grant 7

News from the Institute
Grand Challenges in Electrotechnology, R. Pogorzelski 9
National Engineers Week: Showcasing the Minds and Hands of Engineers 10
IEEE-USA Congressional Fellowships 11
IEEE/ACM Transactions on Networking 11
R&A Standards Committee Report, Leonard S. Haynes 12
People in Robotics and Automation 18
News from Industry: RIA Engelberger Awards 19
Calendar 20
Calls for Papers 24

Advance Announcement
1993 IEEE International Conference on Robotics and Automation
ROBOT CONTROL
Dynamics, Motion Planning, and Analysis

edited by Mark W. Spong, University of Illinois at Urbana-Champaign, F.L. Lewis, The University of Texas at Arlington and C.T. Abdallah, University of New Mexico

IEEE Special Member Price $48.00
through February 31, 1993; $56.00 thereafter
August 1992, hardcover, 544pp (est.) Order #PC0299-8 ISBN 0-7803-0404-7
IEEE Member Price $56.00 List Price $69.95

Designed specifically for robotics engineers and researchers, ROBOT CONTROL offers the hottest developments including robot control algorithms and advances in the control of special classes of robot manipulators. It covers both the available (and proven) control approaches and the more-recent and promising methods available in designing and implementing robot controllers.

Written by those at the forefront of the field, this book shows you how to make robots more useful in manufacturing by providing advanced control techniques that study such important details as unknown parameters, uncertainties and flexibility effects.

ORDER YOUR COPY TODAY!

Available at slightly higher prices from:
IEEE Technical Services Office • 13, Avenue de L’Aquatique, B-1200 Brussels, Belgium • Fax 32.2.770.85.06 • Phone 32.2.770.22.42

ORDER FORM
Complete and Mail Today to Get These Special Prices!

☐ Yes, send me Robot Control (PC0299-9-PAE) at the special member price of $48.00.

Orders postmarked after 2/31/93 will be charged regular price.

☐ In addition, send me the following at member prices:

Author
Order # $:

☐ PAYMENT:
☐ I am an IEEE Member. Please bill me ($25.00 minimum). Nonmembers must prepay.
☐ Check enclosed (payable in US dollars, drawn on US bank)
☐ Charge My: ☐ Visa ☐ MasterCard ☐ American Express ☐ Diners Club
☐ Acct # Exp. Date

☐ Name: IEEE Member No.
☐ Company
☐ Address

☐ Air freight speeds your order. Check here. We’ll charge you at cost.

FORTH FASTE R CALL TOLL FREE (IN USA) 1-800-678-IEEE • FAX 908-981-0667 • PHONE 908-981-0060

Special Offer
Order by February 31, 1993 and SAVE MORE THAN 30% off the list price!

NEW . . . from the IEEE PRESS
Offers the latest techniques on how to make robots more useful . . .
It is an honor and a pleasure to again communicate with you in 1993 about the events concerning the Robotics and Automation Society.

A ballot for the election of six members to the Society's Administration Committee (AdCom) was issued in October 1992. The following candidates have been elected for a three-year term, beginning January 1, 1993: Alan Desroches, Andrew A. Goldenberg, Pradeep K. Khosla, J.Y.S. Luh, Howard Moraff and David E. Orin. Good luck to the newly elected members of the AdCom and thank you to all the candidates for their willingness to serve and for their permission to include their names on the ballot.

Over the next three years, the duties of the AdCom members will involve many different aspects. AdCom decisions influence the long-range success of the society, and I am certain that the six newly elected members and the twelve continuing members will serve the Society with an effective mix of wisdom, energy, innovation, and common sense.

I am pleased to announce that three Chapters have officially been formed in 1992: The Korean Chapter, the Turkey Chapter and the Pittsburgh Chapter. Special thanks go to Drs. B.H. Lee, Okyak Kaynak, and Pradeep Khosla for their efforts in organizing the individual Chapters.

Forming a Chapter is simple. A petition signed by no fewer than twelve Section members, above student grade, must be submitted to the Section Executive Committee via the Section Secretary, for approval. The petition must specify: (1) Name of the Section, (2) Name of the Society, (3) Name and address of the individual serving as the organizer of the Chapter. The petition, together with the written approval of the Section Executive Committee, should then be mailed to: Melvin I. Olken - Staff Director, IEEE Field Services Department, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, U.S.A. Those interested in forming a Section may contact Dr. Harry Stephanou, Vice President for membership, for details.

Dr. Russell Taylor, editor of the IEEE Transactions on Robotics and Automation, continues to enhance the publication. Special issues are being planned. Last year a record number of manuscripts was submitted. In the future, we plan to increase the percentage of high quality application and experimentation papers.

The Newsletter continues to expand and flourish under the editorship of Dr. Michael B. Leahy, Jr., with Rosalyn Snyder as the Managing Editor. We are planning to transform the Newsletter into a Magazine in 1994. Dr. Robert Kelley is currently working with Michael B. Leahy, Jr. and Rosalyn Snyder preparing a proposal for an IEEE Robotics and Automation Society Magazine to be submitted to the IEEE Technical Activities Board for approval.

The Executive Committee of the Robotics and Automation Society held a meeting on December 13, 1992 in Tucson. The Committee decided to establish an Industry, University, and Government Cooperative Committee. Judging from the ever-changing infrastructure of the research environment, it is a timely and wise decision. Dr. Patrick Eicker from the Sandia National Laboratories has kindly agreed to be the first chairman of the committee.

It has been an honor for me to serve the Society, and I thank the many members who have provided advice, encouragement, and assistance during the past year.
Welcome to another issue of the Newsletter. Best wishes for a happy and productive New Year. The new year will be a busy time the Newsletter staff as we transition the Newsletter into a Magazine. Yes, it is official, the Administrative Council (Adcom) approved the concept of transitioning the Newsletter to a Magazine format. We are busy putting together the formal Magazine proposal for circulation and approval through the IEEE publication processes. We are taking an aggressive path toward approval that would allow us to begin Magazine publication in January 1994. Subsequent issues will keep you apprised of our progress through the IEEE wickets.

So what is this Magazine? The IEEE Robotics and Automation Society Magazine will bridge the gap between the IEEE Transactions on Robotics and Automation and commercial trade magazines. The Magazine will build upon the existing newsletter base by adding high quality technical articles in the areas of: applied research, state of the shelf solutions and technologies, and education. Articles will be targeted toward the practicing engineer, emphasizing creative solutions to real-world problems. Implementation details will be highlighted. Tutorials will provide the technical and historical knowledge required to appreciate how theory evolved into application and insight into new theoretical developments. A letters section will provide the forum for open exchange of ideas on issues facing the robotics and automation community.

The Magazine will be distributed quarterly in place of the Newsletter. We will start with 48 pages per issue with a goal to expanded to 64 pages within the first three years. The Magazine proposal will be included in the next issue.

With the proposal in review our attention is directed toward creation of an Editorial board and solicitation of technical articles. One of our primary sources of articles will be papers from our annual conference that match the Magazine scope. In fact, I will attend the 93 conference program committee meeting to get a jump on the solicitation process. However, publication in our conference proceedings is not a requirement for Magazine publication. We will be searching through other conference proceedings and will accept direct mailings. Please hold off on the direct submissions until we can get an editorial policy and peer-review process in place. We will submit both of those items to the Adcom for approval at the May meeting.

We hope that tutorials will become a regular Magazine feature, but it will not happen without your involvement. If you are an expert in one of the many facets of robotics technology please consider sharing your knowledge with your peers. The history of other magazines shows that a well written tutorial can bring a lot of visibility and paper references to the author. An article in the Magazine is also a great way to generate interest for tutorials held in conjunction with a conference or symposium. A tutorial article from each of the technical committees is an excellent goal to strive for.

Please continue to send us your newsworthy exploits. We have a year of 32 page issues to devote to your technical committee activities, research laboratory reports, conference write-ups, technical articles, industrial news, and conference and calendar information. As a new feature we will initiate a section on dissertation abstracts. Along with providing the dissertation title and new place of employment of recent graduates we also will publish a 500 word version of the abstract. Past graduates may also avail themselves of this new service.

Home robots, fact or fiction: The San Francisco Robotics Society writes about their efforts to address the issues associated with home robot technology. The newsletter is about sharing information on the whole spectrum of robot activities, not just formal laboratory programs. We openly solicit contributions from the hobbyist element of the society. Tell us what makes robotics fun for you.

I would be remiss if I concluded before giving a hearty congratulations to the new IEEE fellows within our Society. A listing of our new fellows is included, and as is our custom, we will run brief biographical sketches and pictures of the new fellows in the spring issue.

Keep those comments and suggestions coming. Please note that my email address has changed. Hope to hear from you soon.
Where are the Home Robots?

Brad Smallridge
Director, San Francisco Robotics Society of America

Imagine coming home after work and your robot has already cleaned the house, watered the plants, mowed the lawn, folded the laundry, made the beds, and prepared dinner. Nice idea? Impossible? If you had asked me 50 years ago, I would have said that making home robots was more possible than, say, putting a man on the moon. We've put a man on the moon, we have robots in our industries, but we don't have home robots.

Across this country, pockets of robot enthusiasts still seek this elusive dream. The San Francisco Robotics Society of America (SFRSA) caters to robot builders in the Bay area. We meet monthly at the Exploratorium to discuss the technologies needed to build robots. Speakers address issues of arm kinematics, printed circuit board design, microcontroller programming, motor control, and electronic sensors. It's a good time to get your questions answered because often a fellow robot builder has had similar experience and can give you a speedy solution.

The SFRSA also holds an annual robot games to promote home robots. It's sort of a mini Olympics for robots. This last September we held three events, the Line Slalom, the Maze, and the Outlet event. These events were also held at the Exploratorium.

The Line Slalom is a fast reckless course that appeals to a large audience. Originally designed as a line following exercise, there's a white tape line on a black floor that weaves a triple figure eight around three pylons. Your robot can look at the line, at the pylons, or can dead reckon. We even allow manual remote or wire control so that everyone can compete. An Autonomy weight is factored into the score to favor robots that negotiate their environment without line sensors or human guidance. Next year the weight carrying capacity of the robot will also be factored into the score so that the small, light robots don't have unfair advantage.

The Maze is big, with aisles three feet wide, to accommodate a reasonable-sized home robot. The walls are less than a foot high so that the audience can see. The objective of the Maze event is let your robot find its way out. The Outlet Event is a modified Maze event where your robot is searching the maze for an electrical outlet, and then, if it finds it, must plug itself in.

In addition to the contests, robots are exhibited that demonstrate any unusual or interesting abilities. This year we had a robot dancing the Hokey Pokey and a very elegant arm, with wrist force sensors, wiggling pegs into holes. Next year we intend to add a robot arm event.

While the robot games provide a testing ground for beginner robot builders, a veteran robot builder will concentrate on a special area of robot or electronic technology instead of building a generic mobile robot base. Along this line, and within SFRSA, we have Homer, a home robot vacuuming base; BugEyes, an object recognition vision system; Dexter, a mechanical fingerspelling hand; Boris, a six-legged shape-memory-alloy muscle wire robot; and The BodySynth, an electromiogram to MIDI music interface.

There are global trends in robotics that may spark a resurgence for the home robot. A growing interest in neural networks suggest that we don't have to program every circumstance in step by step progression, a nearly impossible problem for a robot living in a home environment where many unknown factors can come about. There is also the subsumption approach where a number of simpler systems are put together, and then the robot is let free and its behavior is studied. These are a drastic departure from the step by step robot programming of years ago.

We are living in a pre-Wright-Brothers era where home robots don't fly. Who will be the one to put the right combination of mechanical and electronic devices together? It may be a big company but I suspect it may also be a garage-type inventor possibly working in conjunction with a local robot organization.

Brad Smallridge, director of SFRSA, is an electrical engineer and has been designing mechanical and vision systems for Upstart Robots for seven years. For more information about SFRSA call 415-530-0588 or call our BBS at 415-648-6427. To receive the SFRSA monthly Newslet ter by send $5 per year to the Robotics Society of America, PO Box 1205, Danville, CA 94526-1205.
The “First International Symposium on Experimental Robotics” (ISER-I) took place at McGill University, Montréal, in June 1989. The symposium focused on theories applicable to robotics problems which were demonstrated by experiments. A total of 35 papers were included in the program, representing work from Australia, Belgium, Canada, England, France, Germany, Italy, Japan U.S.A., and Yugoslavia.

The program committee included H. Hayward, O. Khatib (Chairs), J. Angeles, R. Chatila, J. Craig, P. Dario, B. Espiau, G. Hirzinger, K. Salisbury, and T. Yoshikawa. A keynote lecture was given by T. Lozano-Perez from MIT.

The program included 42 papers representing Belgium, Italy, France, UK USA, Germany, Canada, Australia, Yugoslavia, Sweden, Japan, China, Switzerland, and Denmark.

The program committee included R. Chatila, G. Hirzinger (Chairs), J. Craig, P. Dario, B. Espiau, V. Hayward, O. Khatib, F. Myasclki, K. Salisbury, and T. Yoshikawa. Dr. Roth from Stanford University gave the opening lecture.

The symposia were supported by local companies and various government agencies.

A video production has been edited collecting the contributions of the two first symposia. The organizers are negotiating with several publishers, including IEEE Press, in order to publish and distribute the videotape of the first ISER. They hope to have copies of the videotape for sale by the time of the IEEE Robotics and Automation Conference in May.

ISER-III, Kyoto Japan
Future symposia are to be hosted as a series in a rotating fashion around North America, Europe and Asia. They are organized so as to be truly international events. The third ISER is being organized to take place in Kyoto in October 1993. The program committee is composed of F. Myasaki, T. Yoshikawa, J. Craig, P. Dario, B. Espiau, V. Hayward, O. Khatib, J.-P. Merlet, and K. Salisbury. Those interested in participating should contact the authors:

Oussama Khatib
SAIL Robotics Division
Dept. of Computer Science
Stanford Univ.
Stanford, CA
94305 U.S.A.

V. Hayward
JPL
McGill University
Research Center
for Intelligent Machines
3480 University
Montreal
Quebec H3A 2A7
Canada.

ISER Participants and Sponsors

<table>
<thead>
<tr>
<th>ISER I: McGill University, Montréal, Canada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants: Stanford Aerospace, Stanford AI Lab, MIT Allab, MIT Mechanical Eng., Univ. Calif.-Santa Barbara, Univ. of California-Irvine, University of Wisconsin, Yale University, GRASP Lab, Univ. of Penn., Carnegie-Mellon Robotics Inst. Jet Propulsion Lab, CSIRO, Australia, Osaka University, Kyor University, Tohoku University, Tokyo University, McGill University, LIFIA-IMAG INRIA, LAAS-CNRS CEA, ENSM, DLR, University of Oxford, University of Pisa, Univ. of Ljubljana, (then) Yugoslavia</td>
</tr>
<tr>
<td>Sponsors: PCAR, Quebec, L'Institut de Recherche d'Hydro-Quebec, Canadian Space Agency (CSA), CAE Electronics, Nat'l Science Foundation, Jet Propulsion Lab, SPAR Aerospace.</td>
</tr>
</tbody>
</table>

| ISIRII: LAAS, Toulouse, France |
| Participants: Katholieke Univ. of Leuven, University of Pisa, LAAS-CNRS, Univ. of California-Irvine, University of Oxford, MIT, LIFIA-IMAG, LAMM, DLR, DFA, Universita Frederico II, Dassault Aviation, McMaster University, Univ. of Western Ontario, **École des Mines, MIDI Robots, McGill University, CERT-DERA, University of Genoa, University of Melbourne, Univ. of Washington, ITM, MEL, CMU, Institut J. Stanford, IBM, Machine Elements, Univ. of Pennsylvania, RPI, Stanford University, Toshiba, NRC, Aurora Flight Sciences, University of Tsukuba, Osaka University, University of Bologna, INRIA, Univ. of Santiago, Chile ElectroTechnical Lab., Gifu University, Univ. California-Berkeley, ETH, TIMB |

JPL
University of Munich
Technical Univ. of Denmark
Kyoto University
Sponsors:
The Canadian Space Agency
C.N.R.S.
Le Commissariat à l’Energie Atomique (CEA)
La Compagnie Matra
Le Conseil General de la Haute-Garonne
Centre Robotique Integre d’Ile de France
Le Laboratoire d’Automatique et d’Analyse des Systèmes (L.A.A.S.)
Matra-Espace
National Science Foundation
La Region Midi-Pyrenees.
The Proceedings of the symposium are available from Springer Verlag: Experimental Robotics 1. 1990. Hayward, V., Khatib, O., (Eds.). Lecture Notes in Control and Information Sciences #139 Springer Verlag.
The 1992 IEEE International Symposium on Intelligent Control

Edward Grant, General Chair
Department of Computer Science
University of Strathclyde

The 1992 IEEE International Symposium on Intelligent Control was held in the Forte Crest Glasgow Hotel, Glasgow, Scotland, from 11-13 August 1992. This was the first time that this event was held outside the United States.

There were 116 delegates registered for the symposium, representing at least 22 nationalities: Forty percent were from the United States; most of the remainder came from the European Community with the UK providing the largest delegation. There was strong representation from Germany, Italy, and Israel, and a single delegate who travelled from South Africa. There was also a fine balance between the "young" and the "old"; a third of the registered delegates qualified for reduced rate registration.

"An Introduction to Learning Control"

The tutorial "An Introduction to Learning Control" was presented jointly by Walter L. Baker and Jay A. Farrell, two enthusiastic staff members from the Charles Stark Draper Laboratory Inc., Cambridge, MA. Their presentation focused on control systems that were explicitly designed to exploit learning behavior.

Delegates began to relate their own experiences with those of the two presenters when the discussion turned to applied learning control, where learning control was shown to be capable of controlling a variety of selected control systems.

First the presenters laid the foundation, demonstrating how learning methods can be used in classical control, through applying learning to gain scheduling, adaptive, and optimal control domains. They presented numerous application examples, including underwater vehicle control, flight control, and missile evasion. Overall, this was seen as being a useful session for the experienced practitioner and the novice alike. This was demonstrated by questions being asked continuously throughout the session, and by the lively discussion at the conclusion.

A second tutorial session, which was added late, "Efficient Learning Algorithms for Nonlinear Modeling, Control, and Prediction", by Zlatko Zografski, dealt more specifically with learning robot control.

Symposium

The Plenary Speaker, Professor A. G. J. MacFarlane, Principal and Vice-Chancellor of Heriot-Watt University, Edinburgh, is well known for his contributions to control engineering, in particular in multi-variable control.

His presentation, "Knowledge, Information and Control", began with a review of the role of the human within the "knowledge loop". Drawing on one's own understanding of personal knowledge, of the universe, subjective knowledge, and society, Professor MacFarlane suggested that this could perhaps be converted into objective knowledge in the form of formal representations.

Professor MacFarlane described the various categories of knowledge, and the need for unambiguous user interfaces to connect the human to computerized representations of these categories of knowledge. He continued by addressing the meaning of, and the interrelationships between, intelligence, knowledge and data.

"Put into the context of a dynamic system controller," he said, "today's controllers are data-based only: they deal only with the virtual dynamics of the system in order to achieve a more dynamically stable system overall."

In the future, he believes, there will be an increased requirement for controllers that integrate virtual data with instantiated intelligence and knowledge. This will not be a straightforward development. As he drew to a close, Professor MacFarlane discussed the relationship between the theories of uncertainty and complexity, and how to use them when characterizing control systems. He considered that data, intelligence, and knowledge all have their individual limits.

To overcome these current barriers to progress, and proceed towards a more general philosophy of control, we will be required to develop what he termed "knowledge machines". He concluded that to achieve a true balance between data, intelligence, and knowledge, increased emphasis must be placed on research into intelligent machines for control. This is perhaps the best way to develop new, and novel controllers.

Technical Sessions

The technical areas of interest covered by the 24 sessions ranged from robotics to industrial applications, expert controllers to neural networks. If the development and use of novel control systems, and/or novel controllers, was a personal quest, then there was something here for everyone. At the closing session, and in private conversation, there was discussion on the continued need for developing formal architectures. The sessions had shown that there was a wide variety of technical solutions being applied to specific
problems, but that there was no general theoretical foundation available to the user. A call was made for the theoretical and applied practitioners to collaborate more closely. Was this to occur, then the community might incrementally move towards developing a general theory together. There were also clear indications of a lack of understanding of the contributions made by human operators in control situations where they are "in-the-loop." Clearly in these situations the human is the most intelligent controller available and there is still a need to "capture their soul" such that we can automate their actions by computational means.

Generally, the "intelligent control" community is producing new, and novel, research continuously. If they are to make significant progress they will obviously need continued financial support but, equally importantly, they will need enhanced infrastructure support. Many of the "demonstrations of principle" of the work presented in the sessions used robots. However, the current world-wide reduction in financial support for robot-based research could seriously affect the future effectiveness of the "intelligent control" community.

The Symposium was sponsored by the IEEE Control Systems Society. The Program Chair was Tom Herderson of the University of Utah. Local Chairs were Ken Hunt (Local Arrangements), Bill Leith (Finance). Generous support was provided by: The City of Glasgow, the universities of Strathclyde, Glasgow, Utah, and Heriot-Watt, The Turing Institute Ltd, the Bank of Scotland and sister organizations, such as the Institution of Mechanical Engineers, and the Institution of Electrical Engineers, both in the UK. The 1993 IEEE International Symposium on Intelligent Control will be August 25-27, The Knickerbocker Hotel, Chicago ILL. General Chair is Panos J. Antsaklis, University of Notre Dame. Program Chairs are Kevin M. Passino and Umit Ozguner, Ohio State University.
Grand Challenges in Electrotechnology

Ronald J. Pogorzelski
Division IV Representative
IEEE New Technology Directions Committee

The New Technology Directions Committee (NTDC) is a standing committee of the IEEE Technical Activities Board (TAB). Its charter is to identify emerging technology areas not currently addressed by IEEE entities and to encourage and facilitate the formation of appropriate ad-hoc intersociety committees in such areas.

The Committee currently consists of a maximum of seventeen members. They are the Chair, the immediate Past Chair, a representative of each of the ten IEEE Divisions, and five Members-at-Large which are to broaden the representation by including other professional societies, government, etc. Recently, at the suggestion of the TAB Structure Review Ad-Hoc Committee, each of the IEEE Societies and Technical Councils was invited to appoint a corresponding member to the NTDC. These corresponding members provide a key technical link between the NTDC and the Societies. Because of this new linkage, the 1993 committee will consist of five standing members and 37 corresponding members.

The current activities of the NTDC include the development of a set of “Grand Challenges” in electrotechnology. They are:

1. To be or not to be reachable anytime, anywhere (wire-free and fiberless communication)
2. To have instant access to all information (databases, high-speed links, flat panel displays and interfaces)
3. To be present or absent anytime, anywhere (virtual presence and reality)
4. Abundant, clean, safe and affordable energy
5. Intelligent highways and transportation systems (personal global navigation)
6. The paperless office (flat panel displays, pen and tablet)
7. The cashless society (electronic purse and wallet)

In addition to these lofty goals, the committee is considering a number of near-term activities in support of new technologies. For example, an Ad-Hoc Committee of NTDC is exploring the possibility of co-sponsoring, with the IEEE Atlanta Section, an interdisciplinary New Technologies Conference with possible emphasis on environment, health, and safety issues.

NTDC is also compiling a list of video tapes on emerging technologies currently in production. Several of the Societies have indicated interest in expanding production of such tapes.

In the interest of preparing a “portfolio” of emerging technologies, NTDC has solicited from each Society a summary of emerging technologies related to its technical purview. Several fascinating summaries have been received and will form the basis of the portfolio.

NTDC recognizes that as Engineers we must emphasize that the new technologies which we promote must be incorporated into new products which fulfill the needs of humanity.

Thus, we must not merely study new phenomena but must study their application for the good of mankind. Interestingly, the fastest growing IEEE Society is currently the Vehicular Technology Society. This rapidly growing area is certainly among those having a positive impact on Society. This growth has spread to the related areas of signal processing, information theory, and communications all of which are areas of interest to specific IEEE Societies.

As mandated by its charter, the NTDC has formed an Ad Hoc Committee on “Energy” chaired by Thomas Pinkham, our Division VII Representative. This Committee is to include representation from a number of Societies. This relates to the fourth “Grand Challenge” listed above.

NTDC also recognizes its relationship to lifelong learning. Practicing engineers must be encouraged to become proficient in the emerging technologies identified by the committee. Educational materials must be made available by the IEEE through its cognizant Societies and through IEEE Press. NTDC continues to meet and plan promotion of new technologies within IEEE and welcomes your suggestions in this regard.
"Our future depends on the minds and hands of engineers." So stated Martha Sloan, chair of National Engineers Week '93 and president of The Institute of Electrical and Electronics Engineers (IEEE), in launching activities for National Engineers Week, the largest-ever annual program celebrating the engineering profession's contributions to American life.

The 1993 event, scheduled February 14-20, is dedicated to the theme "Engineers: Turning Ideas into Reality." Exploring various dimensions of that theme is a series of major events designed both to highlight the achievements of engineers' minds and hands, and to enlist them in furthering the education of tomorrow's technological pioneers.

The fourth annual Discover"E" program will see "thousands of engineers reach into their communities and local schools to show how the engineering professional contributes to our quality of life and to interest youngsters in the technological world around them," according to Kenneth T. Derr, honorary chair of National Engineers Week and chairman of Chevron Corporation. An estimated 30,000 engineers will conduct programs emphasizing "Engineering Energy" in elementary, junior and senior high schools across the country. Chevron's Derr will lead this year's contingent of "All-Stars," engineers who have become prominent leaders in many areas of American life and who now seek to pass on their visions and ideals to the rising generation. This year's roster includes IBM president Jack D. Kuehler, NASA administrator Daniel Goldin and former astronaut Mary Cleave, among many others.

Engineers of tomorrow is also the focus of the first annual Future City Competition, which teams engineers, teachers and seventh and eighth grade students to design a computer-simulated city of the 21st century, "Students will learn the pros and cons of different sources of energy and see first-hand how engineers turn ideas into reality," said The IEEE's Sloan. Teams will use SimCity™, software donated by Maxis, to compete for prizes, including personal computers provided by IBM Corporation, for winning schools in the regional and national contests. Regional winners will travel to Washington, D.C., to compete in the national finals on February 17 at the U.S. Department of Energy.

The week's activities will climax at the Evening Gala on February 17, tentatively scheduled at Intelsat's futuristic corporate headquarters in the nation's capital. Students will join representatives of engineering societies and other special guests in a festive celebration of engineering as a profession. Winning models of the Future City Competition will be on display, along with winning entries in the "Powers of Energy Visions of Technology" photo contest for practicing engineers and engineering students, highlighting engineering contributions toward the development of safe and efficient energy. Another display sure to attract interest will be the "Marsville" demonstration, a student project sponsored by the Challenger Foundation that will present creative solutions to the various challenges posed by a human habitat on Mars.

National Engineers Week '93 is jointly sponsored by 18 engineering societies and 10 major corporations, with the cooperation of hundreds of businesses, colleges and government agencies. In 1993 the lead sponsoring society is the IEEE and the lead corporate sponsor is the Chevron Corporation. National Engineers Week has been an annual event since it was founded in 1951 by the National Society of Professional Engineers.
The Institute of Electrical and Electronics Engineers, Inc.
United States Activities
Announces the 21st annual competition for
1993-1994
IEEE-USA Congressional Fellowships.

PROGRAM: Electrical and Electronics Engineers and Allied Scientists are competitively selected to serve a one-year term on the personal staff of individual Senators or Representatives or on the professional staff of Congressional Committees. The program includes an orientation session with other Science-Engineering Fellows, sponsored by the American Association for the Advancement of Science (AAAS).

PURPOSE: To make practical contributions to more effective use of scientific and technical knowledge in government, to educate the scientific communities regarding the public policy process, and to broaden the perspective of both the scientific and governmental communities regarding the value of such science-government interaction.

CRITERIA: Fellows shall be selected based on technical competence, on ability to serve in a public environment, and on evidence of service to the Institute and the profession. Specifically excluded as selection criteria are age, sex, creed, race, ethnic background, and partisan political affiliations. However, the Fellow must be a U.S. citizen at the time of selection and must have been in the IEEE at Member grade or higher for at least four years. Additional criteria may be established by the selection committee.

AWARDS: IEEE-USA plans to award at least two Congressional Fellowships for the 1993-1994 term. Additional funding sources may permit expansion of awards.

APPLICATION: Further information and application forms can be obtained by calling W. Thomas Suttle (202) 785-0017 at the IEEE-USA Office in Washington, D.C. or by writing:

Secretary, Congressional Fellows Program
IEEE
1828 L Street, N.W.
Washington, D.C. 20036

Applications must be postmarked no later than March 31, 1993 to be eligible for consideration.

IEEE/ACM Transactions on Networking

The mushrooming science of computer networks is the subject of a new bi-monthly journal to be published jointly by the IEEE Computer and Communications Societies, and the Association for Computing Machinery (ACM) and its Special Interest Group on Data Communication (SIGCOMM).

The first issue of IEEE/ACM Transactions on Networking will appear in February, 1993. The journal will include articles of interest to computer network researchers, designers and users, especially those whose corporations and organizations—such as governments and financial institutions—transmit masses of information.

Editor of the new journal is Dr. James Kurose, Professor of Computer Science at the University of Massachusetts, Amherst.

Kurose foresees a global audience for Transactions on Networking, with significant numbers of readers in Europe and the Pacific Rim. "An estimated half trillion dollars ($500 billion) is spent each year worldwide on telecommunications equipment and services," he said. A more tangible example, Kurose pointed out, is the recent growth of Internet, which 10 years ago connected some 200 computers and now serves well over 750,000.

Kurose also noted that the networking industry in recent years has exploded exponentially. This has been made possible, he said, by the confluence of technical advances in a number of areas, including transmission technologies, switching, and design methodologies.

Correspondence should be addressed to Kurose at: Department of Computer Science, University of Massachusetts, Amherst, Mass., USA 01003.
This report was abstracted from the September 1992 Robotic Industries Association (RIA) Standards Report written by Mr. James A. Payton. The RIA is approved by the American National Standards Institute (ANSI) as an “Accredited Sponsor” to develop consensus on Draft Standards and serves, through ANSI, as the Administrator and Secretariat for the U.S. Technical Advisory Group (USTAG) for the International Standards Organization (ISO)/TC184/SC2 - Robots for the Manufacturing Environment. Additional sections of this report were written by Leonard S. Haynes for the IEEE Robotics and Automation Society Standards Committee. All approved standards listed below are available through ANSI, or through the Robotic Industries Association at nominal costs. Draft standards can also be obtained through the RIA, and all standards committee meetings are open to all interested parties.

December 14, 1992

I. Robotic Industries Association

R15.01 Electrical Interface

The R15.01 Subcommittee on Electrical Interfacing has authored the standard entitled Industrial Robots and Robot Systems—Common Identification Methods for Signal and Power Carrying Conductors which was approved by ANSI as an American National Standard on May 14, 1990 and was published by ANSI on November 16, 1990. The R15.01 Subcommittee is chaired by Peter Deschner, Olflex Wire and Cable Co.

R15.02 Human Interface

The R15.02 Subcommittee on Human Interfaces has completed ANSI/RIA R15.02 1990 Human Engineering Design Criteria for Robot Control Pendants. The standard received ANSI approval on December 28, 1990 and was published by ANSI on September 12, 1991. The Subcommittee Chair is open.

R15.03 Mechanical Interface

The R15.03 Subcommittee has authored draft Standard BSR/RIA R15.03-1, Revision 7, Circular Mechanical Flange Interface. It was submitted to the RIA R15 Executive Committee for Standards Approval vote. The voting period ended on September 9, 1991. The results are currently being evaluated. This draft is similar to ISO 9409-1 which is in the process of being revised. Since the RIA policy is to harmonize its standards with ISO standards, R15.03 will delay further action on R15.03-1 until the ISO 9409-1 revisions are completed. R15.03 has also developed another draft standard BSR/RIA R15.03-2, Revision 5, Mechanical Shaft Interface. Before submitting this draft to the Executive Committee for Standards Approval, another revision will be made to harmonize our draft with a Japanese draft on a Shaft Mechanical Interface. The Japanese draft is dated August 27, 1991.

R15.03 is chaired by Dr. Hadi Akeel, Vice President/Chief Engineer at GMFanuc Robotics.

R15.04 Communication/Information

The R15.04 had completed a Robot Companion Standard for the ISO/IEC 9506 Manufacturing Message Specification. At that point, the R15.04 document was submitted to ISO/TC184/SC2/WG6 as a U.S. contribution. WG6 has used the R15.04 document as a base document which has now been developed into the ISO 9506/3 Robot Companion Standard to the MMS document. For a period after that submission, R15.04 became inactive. Recently R15.04 has been reactivated to develop a position on the ISO/TC184/SCVWG4 proposal for a Programming Language for Robots (PLR). R15.04 will advise the USA Technical Advisory Group for ISO/TC184/SC2. R15.04 will also develop USA Initiatives on robot programming language issues such as user interfaces and application packages. The R15.04 Chair is currently open.

R15.05 Performance

The R15.05 Subcommittee has produced the American National Standards for the Evaluation of Point-to-Point and Static Performance Characteristics of Industrial Robots and Robot Systems which was approved by ANSI on September 13, 1989 and published by them in May, 1990 as ANSI/RIA R15.05-1–1990. The objective of this standard is to provide meaningful technical information that robot users can utilize in the selection of the proper robot for their specific application needs. R15.05 also maintains full liaison with the ISO/TC 184/SC21/WG2 Performance Criteria and Related Testing.
Methods working group, which has developed the ISO 9283 Standard Manipulating Industrial Robots—Performance Criteria and Related Test Methods. R15.05 is now in the process of developing a standard to cover Dynamic Robot Performance. BSR/RIA R15.05-2-199X Proposed American National Standard for Industrial Robots and Robot Systems—Evaluation of Path-Related Performance Characteristics was submitted to the RIA R15 Executive Committee for Standards Approval and is scheduled to be submitted to the American National Standards Institute in late 1992. R15.05 is Chaired by Tom Helzerman of Ford Motor Company.

R15.05-WGI - Reliability
This Working Group of R15.05 has developed a proposed reliability standard intended to replace a multiplicity of robot user test specifications that now exist. It is expected that both users and manufacturers will benefit from the cost reductions associated with the common acceptance and use of only one test verification requirement.

R15.05 is chaired by Jim Wells of General Motors Corp.

R15.06 Safety
The R15.06 Subcommittee has completed the landmark Robot Safety Standard ANSI/RIA R15.06-1986 American National Standard for Industrial Robots and Industrial Robot Systems: Safety Requirements. The 1986 standard has been revised in the areas of illustrations, training, applications, attended continuous operation, and risk assessment. The revised standard ANSI/RIA R15.06-1992 was approved on August 19, 1992.

This Subcommittee also closely monitors activities and documents developed by the ISO/TC 184/SC2 WG3 on Safety, such as ISO 10218, Industrial Robot Safety. R15.06 is chaired by Howard Kuetner, Senior Technical Specialist, Aluminum Company of America.

R15.07 Simulation/Off-line Programming

2. Automated Imaging Association

The Automated Imaging Association was formed by the Robotic Industries Association in 1984. It established the AIA Standards Committee in 1985 in response to the desire of AIA membership to effectively apply machine vision technology in industry through technical participation by the industrial community. The AIA is now accredited by the America National Standards Institute to develop American National Standards.

A15.01 System Communication
The A15.01 Subcommittee is striving to develop communication standards and protocols which will simplify the exchange of information between machine vision systems and other devices. The Subcommittee has constructed a system model which distinguishes the interfaces between the Recognition, Identification, or Measurement (RIM) device and the other components of the model: the sensor, the user, the host/controller, and the machine/process functions. This model was approved by the A15 Standards Committee. A15.01 will concern itself primarily with the host/controller interface, and will conform to the Open System Interconnection (OSI) conventions whenever possible. The A15.01 Chair is open.

A15.05 Performance

Current A1 5.05 activity is made up of the following Working Groups:

1) WGI - Working Group 1 is preparing a Machine Vision Acceptance Methodology, which will define acceptance procedures as well as give statistical criteria for the acceptance of machine vision systems;

2) WG2 - Working Group 2 is developing a Machine Vision Camera Data Sheet along with A15.08 - Sensor Interfaces. This project requires the group to identify key camera attributes and either identify or develop standard performance tests to quantify these attributes;

3) WG3 - Working Group 3 is drafting an optical Character Recognition Performance Test in conjunction with A15.09 Marking and Labeling;

4) WG4 - Working Group 4 is preparing further measurement tests based on ANSI VAVA A1 5.05/1-1989. WG4 has completed an initial draft of a one-dimensional target test and has circulated the draft for Subcommittee review.

A15.05 is chaired, pro-tem, by Robert Dewar, Perceptron Inc.

A15.07 Terminology
The A15.07 Subcommittee develops terminology standards which will facilitate machine vision communication including person-to-person, data communication, and user interfaces. The Subcommittee is now focusing on defining categories of machine vision applications. A revised AIA Glossary of Machine Vision Terms was published in April, 1991. A15.07 is chaired by Joe Christenson of Pattern Pro-
Give your robot ESP

The ORS-1 optical rangefinder is an alternative to costly computer vision and unreliable acoustic sensor systems.

The ORS-1 is an eyesafe, infrared optical rangefinder specifically designed for mobile robots.

- direct range measurement
- no specular reflection
- measures range to oblique surfaces
- kilohertz data rates easily handled by standard microprocessors
- genuinely low cost

ESP Technologies Inc.
21 Le Parc Drive • Lawrenceville • NJ 08648
Phone (609) 275-0356 • Fax (609) 799-0806

ISO9004 Quality management and quality system elements - Guidelines;
ISO/DIS 90042 Quality management and quality system elements - Part 2: Guidelines for services;
ISO10011-1 Guidelines for auditing quality systems - Part 1: Auditing;
ISO10011-2 Guidelines for auditing quality systems - Part 2: Qualification criteria for quality systems auditors;
ISO10011-3 Guidelines for auditing quality systems - Part 3: Management of audit programmes;

The American Society for Quality Control (ASQC) maintains a list of organizations that currently offer Quality System Registration. Their number is (414)272-8575.

A great deal of material relevant to EC standards can be obtained from the

Robotic Industries Association
900 Victors Way
Ann Arbor, MI 48106

or from

Intelligent Automation, Incorporated
1370 Piccard Drive, Suite 210

Rockville, MD 20850.

The National Institute of Standards and Technology, Gaithersburg, MD, 20899, has a recorded hotline message, updated weekly by NIST, which reports on directives and standards under development by the EC and Brussels-based standards development organizations, CEN, CENELEC, and ETSI. The information is broken down by subject or product, and tells the caller where to obtain review copies of drafts and deadlines for comments.

A quarterly newsletter called Europe Now highlights EC events and U.S. Government export programs. The newsletter is published by the U.S. Department of Commerce and is available free of charge from

Europe Now
U.S. Department of Commerce,
Room 3036
Washington, DC 20230
Tel: (202)377-5376.
Publications Committee Update

Robert B. Kelley, Rensselaer Polytechnic Institute
R&A Society Publications Committee Chair

• ASK-IEEE Document Delivery Service
 Publishing Services Staff Director Phyllis Hall announced IEEE's new document delivery service “ASK IEEE,” a full-service document delivery with special rates to IEEE members. ASK-IEEE will also provide documents from other publishers. It will be an income source for the General Fund as well as for the societies. She noted that IEEE is the first primary publisher to deliver its own materials.

• Electronic Dissemination of Information Experiment
 Beginning in 1993, IEEE will make a number of databases available. This will be a joint project of Communications Society, the Computer Society, and Publishing Services. These will include:
 • An advanced abstract database
 • A table of contents database
 • A key volunteer/staff directory
 • An advance conference information — including on-line reservation for select conferences.
 • An on-line version of THE INSTITUTE.

• TAB/IEEE Press Book Series
 A new book series will begin a three-year trial in 1993. Three new book series will be developed jointly by TAB, Societies/Councils, and IEEE PRESS. They are: Emerging Technologies, Design and Applications, and Tutorials. TAB will encourage workshops within the societies and the workshops will lead to IEEE PRESS books carrying both PRESS and Society imprints.
 Are you interested in getting involved in this new series, or in establishing a new Robotics and Automation series? Are you an author looking for a publisher? Are you interested in helping as a reviewer? If your answer is YES, or you would like to know more about the opportunities afforded by the IEEE Press, contact me.

 Tel: 518/276-2653
 Fax: 518/276-8715
 Email: kelley@ral.rpi.edu

IEEE Neural Networks Council AdCom Report

Wesley E. Snyder, Bowman Gray School of Medicine
Robotics and Automation Society Neural Networks Council Liaison

The Robotics and Automation Society is one of the 14 participating societies in the NNC. The following is a summary of upcoming NNC activities of particular interest which were discussed at the December 5 meeting of the NNC Administrative Committee. The Council sponsors the IEEE Transactions on Neural Networks and other activities.

NNC Conferences:
- ICNN93/FUZZ93 will be San Francisco March 28–April 1, 93
- ICNN 93 Nagoya in October will include an "industrial forum" for managers who are not familiar with the field.
- 1993 Forum on applications of NN to power. April 93, Japan, NNC is cooperating.
- The IEEE Conference on Virtual Reality will be held in Seattle September 18-22, 1993
- Robot-human communication workshop-Nov 93-Japan Techni-
cal co-sponsorship requested-referred to committee.
- 1994 World Congress on Neural Networks will be held in Orlando
- 1995 ICNN - Perth, Australia
- 1996 ICNN -Washington, DC
- 1996 FUZZ-New Orleans (Tentative)
- 1997 2nd World Congress San Diego (proposed)

Regional Interest Groups
The council has established Regional Interest Groups (RIGs). There are currently 6 RIGs: 3 in Australia, NC, Arizona, Korea. The Standing Committee on RIGs is chaired by Rick Alan of TRW Safety Systems.

Standing Committees
A letter is going to all society presidents to support travel for society representation to the Virtual Reality Technical Committee.

In 1994, all IEEE Conf. Proceedings will be on CDROM through 93; NNC will do same. NNC appointed a committee to get all 1992 and 1993 conferences on CDROM before IEEE is geared up.

Publications
- Two Council-sponsored video tutorial series are out: Pioneer Series and Fuzzy Systems.
- NNC considered a recommendation for a Transactions on Applications in Computational Intelligence. A committee was appointed to develop an editorial policy.

For more information contact Wesley Snyder, RA NNC liaison at (919)716-3908 or west@reliro.medeng.wfu.edu.
People in Robotics and Automation

R&A IEEE Fellows

Congratulations to the following members of the Robotics and Automation Society who have recently been named Fellows of the IEEE. The status of Fellow is awarded through an arduous evaluation process to members who have demonstrated outstanding contributions to the field and are nominated by other Fellows. Only about 250 of the more than 300,000 members of the IEEE are named as Fellows each year. We will have more about these new Fellows in the next issue.

• John Baillieul: For contributions to nonlinear control theory, robotics, and control of complex mechanical systems

• J. Thomas Cain: For leadership and contributions to computer science and engineering education.

• C.S. George Lee: For contribution to computational algorithms and architectures in robot kinematics and dynamics, and for leadership in robotics education

• David E. Orin: For contributions to the computation of robot kinematics and dynamics

• Robert F. Stengel: For contribution to the analysis and design of aerospace control systems

• Nukala Viswanadham: For contributions to the modeling and performance of analysis of flexible manufacturing systems.

Troy Nagle: 1993 IEEE President-elect

H. Troy Nagle, a professor of electrical and computer engineering at North Carolina State University in Raleigh, has been elected 1993 President-elect of The Institute of Electrical and Electronics Engineers, Inc. (IEEE). Nagle will assume the presidency of the IEEE on Jan. 1, 1994.

Nagle, who joined the IEEE in 1966, was named an IEEE fellow in 1983. He served on the Board of Directors from 1987-90, and was Vice President - Technical Activities, 1989-90.

On the Move

Harry H. Cheng, formerly with Research and Development, United Parcel Service, Inc is now Assistant Professor, Department of Mechanical, Aeronautical and Materials Engineering, University of California, Davis, CA 95616, Tel: (916)752-5020, Fax: (916)752-4158, Email: chengh@ch. engr.ucdavis.edu

New Arrivals

Congratulations to the following students who have been awarded the Ph.D. Beginning with the next issue, we will include 500-word abstracts of Ph.D. Theses.

• Angel P. del Pobil, University of Navarra, Spain. Thesis: Robot Motion Planning based on Artificial Intelligence Techniques: A Spherical Model”. July 1991 Advisor: Professor Miguel A. Serna Currently: Associate professor at the Department of Computer Science, Jaume I University, Spain. Email: pobil@inf. uji.es

IEEE Robotics and Automation Society
Email Directory

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Email</th>
<th>FAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Leahy</td>
<td>RACE, Kelly AFB, TX</td>
<td>mleahy@sadis05.kelly.af.mil</td>
<td>(210) 925 4916</td>
</tr>
<tr>
<td>Larry J. Keating</td>
<td>Metropolitan State College</td>
<td>keating@zeno.mscd.edu</td>
<td>(916)752-4158</td>
</tr>
<tr>
<td>Harry H. Cheng</td>
<td>Univ. of California, Davis</td>
<td>chengh@ch. engr.ucdavis.edu</td>
<td></td>
</tr>
<tr>
<td>New Zheng</td>
<td>Intelligent Automation Inc</td>
<td>geng@eesen.gwu.edu</td>
<td>(301) 990 2409</td>
</tr>
<tr>
<td>David Stanton</td>
<td>Univ. of Surrey, UK</td>
<td>d.stanton@surrey.ac.uk</td>
<td>+44 483 306039</td>
</tr>
<tr>
<td>Banavar Sridhar</td>
<td>NASA Ames Res. Ctr.</td>
<td>bsridhar@windchime.arc.nasa.com</td>
<td></td>
</tr>
<tr>
<td>Richard Klafter</td>
<td>Temple Univ.</td>
<td>v5442e@vm.temple.edu</td>
<td>(215)787-6936</td>
</tr>
<tr>
<td>Angel P. del Pobil</td>
<td>Jaume I University, Spain</td>
<td>pobl@inf.uji.es</td>
<td>+34.64.345.670</td>
</tr>
<tr>
<td>Yilin Zhao</td>
<td>Motorola, Inc.</td>
<td>yilin@navhawk99.ivhs.mot.com</td>
<td></td>
</tr>
</tbody>
</table>

Send Email Directory and Calendar items to Rosalyn Snyder, Managing Editor, roz@reli. medeng.wfu.edu, 7621 Penland Dr., Clemmons NC 27012, 919-766-6210 (Note new address)
News from Industry

Robotics and Machine Vision Industries "Fight Back with Automation"

Manufacturing firms seeking automation solutions will find help at the International Robots and Vision Automation Show and Conference at Cobo Center in Detroit, April 6-8, 1993.

The Conference features eight in-depth tutorials, 25 conference sessions, and two user-vendor roundtable discussions. The Show features leading robotics and machine vision products.

Also featured are two applications workshops focussed exclusively on a single application that is currently difficult to perform, but potentially can provide significant savings. The workshop topics are Grinding and Deburring Operations and Robotics for Hazardous Operations.

A special session, the International Service Robot Congress, will feature presentations on apply robots for commercial cleaning, health care, surgery, security, and hazardous handling. Included will be a debate on "The Household Robot: How Soon at What Cost?" Joseph F. Engelberger, Chairman, Transitions REsearch Corporation, will present the challenge to industry that a useful household robot can be developed in three years for just $15 million in R&D.

The show is sponsored by Robotics Industries Association, the Automated Imaging Association, the National Service Robot Association, and the Global Automation Information Network.

Visitors to the show will receive free admission to IPC '93, featuring programmable controls, which runs concurrently. For details, contact RIA, PO Box 3724, Ann Arbor MI 48106, telephone (313)994-6088, FAX (313)994-3338.

RIA Engelberger Awards

• Four robotics leaders have won the 1992 Engelberger Robotics Award. The award is presented annually by Robotic Industries Association (RIA).

• Dr. Ing. Rolf D. Schraft, Vice Director, Fraunhofer Institute, Stuttgart, Germany, received the 1992 award for application. The Institute specializes in applied research. Schraft heads the Automation Division, which has made significant developments in areas such as robots for cleaning aircraft, intelligent mobile robots, off-line programming, and robots for clean rooms.

• Dr. John Craig, Vice President of Research and Development, Silma, Inc, Cupertino, CA, won the 1992 award for education. Dr. Craig authored Introduction to Robotics, a robotics textbook now in use at more than 90 universities. Craig is also an instructor at Stanford University and a seminar leader for corporations and government agencies throughout the world.

• Lothar Rossol, President and Chairman, Trellis Software and Controls, Rochester Hills, MI received the 1992 award for technology development. At General Motor Research Lab, he founded a vision and robotics research group which pioneered the development of vision guided robots. He then joined GMFanuc Robotics in 1982, where he led the development of the AREL programming language and other major products.

• Eric Mittelstadt, President and CEO, GMFanuc Robotics

Corporation, Auburn Hill, MI, won the 1992 award for industry leadership. He has been a forceful advocate for improving U.S. industrial competitiveness through advanced manufacturing methods, and a strong voice in support of a national industrial policy.

RIA is now accepting nominations for the 1993 Engelberger Robotics Awards. For further details, contact RIA at P.O. Box 3724, Ann Arbor, MI 48106, telephone (313)994-6088, fax (313)994-3338.

IEEE Robotics and Automation Society 19
Calendar

• February 14-18, 1993, Medical Imaging VII. Newport Beach CA. Contact: SPIE, Box 10, Bellingham WA 98227-0010. Tel 206 676 3290; Fax: 206/647-1445; Internet: spie@nessie.wwv1.edu; CompuServe: 71620,2177

• February 15 - 19, 1993 IAS-3: International Conference on Intelligent Autonomous Systems. Contact: Mrs. Patty Mackiewcz, Robotics Institute, Carnegie Mellon University, Pittsburgh PA 15213. Email: patty@ri.cmu.edu

• March 28-April 1, 1993 ICNN93: IEEE International Conference on Neural Networks. San Francisco. Contact: Ms. Nomi Feldman, Meeting Management, 5665 Oberlin Drive, Suite 110, San Diego CA 92121 Tel 619 453 6222; Fax 619 533 3880

• April 6-8, 1993. International Robots and Machine Vision Automation Show and Conference. Detroit. Contact: KIA, PO Box 3724, Ann Arbor MI 48106, Tel. (313)994-6088, Fax: (313)994-3338

• April 12-16, 1993 Applications of Artificial Intelligence XI: Machine Vision and Robotics Orlando FL. Part of SPIE’s OE/Aerospace Science & Sensing. Submissions deadline was September 14 but may have been extended. Contact: Kim Boyer: kim@ee.eng.ohio-state.edu or Louise Stark: stark@cee.usf.edu. Registration: SPIE, PO Box 10, Bellingham WA 98227-0010; Tel 206/676-3290; Fax 206 647 1445.

INNOVATIVE

The Whole-Arm Manipulator (WAM) expands the limits of robot technology. It uses simple, human-like kinematics. Interacts effectively with any environment. Moves smoothly and quickly without friction or backlash. WAM—the next generation of robot. E F F I C I E N T

Barrett Technology Incorporated 545 Concord Avenue Cambridge, MA 02138 Tel 617 868-7730 Fax 617 868-7737

May 10-12, 1993. SPANN’93: IMACS Symposium on Signal Processing and Neural Networks, Montreal, Canada. Contact: Prof. Z. Jacyno, Department of Physics, University of Quebec at Montreal, P.O.Box 8888, Station A, Montreal, P. Quebec, Canada, HP3.

June 1-4, 1993. IEA93ATE: 6th Int'l Conf. on Industrial & Engineering Applications of Artificial Intelligence & Expert Systems. Contact: Paul Chung, Dept. of Chemical Engineering, Loughborough University of Technology, Loughborough, Leicestershire, England, UK, LE11 3TU, Email: p.w.h.chung@lnt.ac.uk.

June 15-17, 1993 IEEE Conference on Computer Vision & Pattern Recognition June 15-17, 1993 Contact: Yiannis Aloimonos, Computer Vision Laboratory, Center for Automatic Research, A. V. Williams Building, 115 Paint Branch Drw, University of Maryland, College Park, MD 20742-3411.

June 16-18. International Unmanned Ground Robotics Competition (See call for papers)

July 14-16 1993 Intelligent Vehicles ’93. Tokyo. Sponsor: IEEE and SAE. Contact: Ichiro Masaki, Computer Science Dept., General Motors Research Laboratories, 30500 Mound Road, Warren MI 48090-9055 USA, Tel: 313 986-1466; Fax 313 986 9356; email masaki@gmr.com

July 14-16 Robots for Competitive Industries. Brisbane, Queensland, Australia. Sponsor: Australian Robot Association and the International Federation of Robotics. Deadline was Jan 15, but contact: Hartmut Kaebner, School of Mechanical and Manufacturing Engineering, University of New South Wales, PO Box 1, Kensington NSW 2033, Australia, fax +61 2 663 1222. Registration: Australian Robot Association, INC, GPO Box 1527, Sydney NSW 2001, Tel: 61 959 3239. Fax 61 2 959 4632; email: michael@extro.ucc.su.au

July 26-30 IROS 93: Int’l Conf. on Intelligent Robots and Systems. Yokohama Japan Contact: Masatsugu Kidode, Kansei Research Lab., Toshiba Corp., 8-6-26 Motoyama- Minami-cho, Higashinada-ku, Kobe; 658 Japan, tel: 81 78 435 3502; fax 81 78 435 3678 or Tomomasa Sato, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153 Japan, Tel 81 3 3481 4479 Fax: 81 3 3481 4584.

Zebra-ZERO Force Control Robot

- Advanced integrated force/position control.
- Open hardware and software architecture.
- Uniquely suited for mobile mounting.
- Ideal for robotics and controls research.

INTEGRATED MOTIONS, INCORPORATED
750 Gilman Street Berkeley, CA 94710
Tel: (510) 527-5810 Fax: (510) 527-7843
email: 70413.2213@compuserve.com

October 5-8, 1993. IPCC’93: Int’l Professional Communication Conference, Philadelphia. Information: Michael B. Goodman, General Chair, Tel: (201) 593-2402 Fax (201)593-8510; Registration: W.P. Kehoe, IPCC93 Finance, JHU/APL, 6-379, Johns Hopkins Road, Laurel MD 20723 Tel. (301)953-5000, ext 7944; Fax (301)95305937.

October 1993, ISER’93: Int’l Symposium on Experimental Robots. (See call for papers)

November 4-6, 1993 ISIR: Int’l Symposium on Industrial Robots. See Calls for Papers

December 15-17, 1993, 1993 Computer Architectures For Machine Perception (CAMP’93) Workshop, New Orleans, Univ. of Maryland, College Park, MD 20742, USA. Contact Johanna Weinstein by e-mail at: camp93@umiacs.umd.edu.
ROBIX™
RCS-6 Robotic Construction System

Mechanics include machined aluminum and Delrin structural elements, parallel-jaw gripper, weighted 3-point base with post, manipulator breadboard, servos (6 Futaba S148 or similar, ~0.5° repeatability), assembly tool, more.

Use Robix language with built-in editor and teach-pendant mode for sequencing. Extend capability with calls from C or QB 4.5.

Connect to DOS PC's LPT1/2. 8-ch by 8-bit A/D, 7 switch inputs, 2 outputs. Software provides auto-matched velocity trapezoids, per-axis maxspd, accel, decel, min/max/init/zero pos, abs/rel moves, and more.

Robix RCS-6 complete (less printer cable):

U.S. $550

Advanced Design, Inc.
1101 E. Rudasill Road, Tucson, AZ 85718
voice: (602) 544-2390 fax: (602) 575-0703

February 2-4, 1994 MATH MOD Vienna: Int'l IMACS Symposium on Mathematical Modelling. (See call for papers)

Having Problems Getting Your IEEE Pubs?

If you have moved or changed jobs and your IEEE publications did not follow you, or if you want to order new publications or get information, contact IEEE Customer Services, Tel. (800) 678-4333 (U.S. only), (908) 981-0060 Fax (908) 981-9667. Include your full name (as it is listed on their records), your IEEE membership number, your address, and your old address. Then, describe your problem or enquiry. Allow four to six weeks for address changes.

Working with a competitive edge makes the difference.

Consider the personal and professional benefits that only IEEE can offer you. Being a member of IEEE—the world's largest technical society—makes it easier for you to meet the established professionals in your field; to have ready access to all the latest state-of-the-art information, technical meetings and conferences.

IEEE can be the single most vital source of technical information and professional support to you throughout your working career. No doubt, you're already established in your field. Now gain that competitive edge. Become the best informed—an IEEE engineering/scientific professional.

For a FREE IEEE Membership Information Kit use this coupon.

Name ____________________________
Title ____________________________
Firm ____________________________
Phone ____________________________
Address ____________________________
City State/Country Postal Code
Mail To: IEEE MEMBERSHIP DEVELOPMENT
The Institute of Electrical and Electronics Engineers, Inc. 445 Hoes Lane, P.O. Box 1331 Piscataway, N.J. 08855-1331, USA • (908) 562-5524

IEEE Robotics and Automation Society 23
Calls for Papers

Note: Fax and email submissions are usually not acceptable. Please contact Program Chair for specific details regarding paper preparation and deadlines before submitting papers.

- Fifth International Conference on Genetic Algorithms. July 17-22. University of Illinois at Urbana-Champaign. Sponsor: The International Society for Genetic Algorithms. Contact: Prof. Stephanie Forrest, Dept. of Computer Science, University of New Mexico, Albuquerque, N.M. 87131-1386, phone: (505) 277-3112, fax: (505) 277-0813, email: icga93@unm.vax.cs.unm.edu Submissions: Four (4) complete copies (hardcopy only, 12 point, single-spaced, 10 pages maximum, separate title page for anonymous review), postmarked by February 1, 1993

- IEEE Int'l Symposium on Intelligent Control August 25-27 Chicago. Sponsor: IEEE Control Systems Society. Submissions: 5 copies of full paper by March 15 to Kevin M. Passino, ISIC’93, Dept. Electrical Engineering, Ohio State University, 2015 Neil Ave., Columbus Ohio 43210-1272. Tel. (614)292-5716. email: passino@eagle.eng.ohio-state.edu. Workshop & Tutorial Proposals: Panos J. Antsaklis, Tel. (219)239-5792; Fax (219) 239-8007; email flxfsn@irishmvs.cc.nd.edu

- ICANN’93: International Conference on Artificial Neural Networks (ICANN’93). September 13-16 1993. Amsterdam. Topics include: Computational principles from neurobiology, Physical and Mathematical theories, Cognitive connectionism, Robotics, Applications. Submission deadline for papers: February 1 1993. Contact: ICANN’93 Secretariat, Novep, Paujus Potterstraat 44, 1071 DB Amsterdam, The Netherlands. Tel. 31-20-6714814, Fax 31-20-6628136, email icann@mibys.kun.nl

Get your robot on the track

dSPACE control implementation tools provide automatic code generation for multivariable controllers graphical insight to all variables under real-time operation more than 33 Mflops with TMS 320 digital signal processors peripheral boards configured to your application powerful interfaces to standard control design and analysis tools

dSPACE digital signal processing and control engineering GmbH An der Schönen Aussicht 2 · W-4790 Paderborn · Germany phone ++ 49 5251 16 36-0 · fax ++ 49 5251 8 65 29
cho, Chikusa-ku, Nagoya 464-01 Japan. Tel: 81-52-781-5111 ex. 6783; Fax: +81-52-781-9243. A limited number of travel awards will be granted.

ISER'93: International Symposium on Experimental Robots. October 1993 Kyoto, Japan. Submissions:
Contact: Oussama Khatib, SAIL, Robotics Division Department of Computer Science, Stanford University Stanford, CA 94305 U.S.A.; Prof. J. K. Salisbury, MIT Artificial Intelligence Laboratory, 545 Technology Square, Cambridge, MA 02139 U.S.A.; or Prof. V. Hayward, McGill University, Research Center for Intelligent Machines, 3480 University, Montreal, Quebec, H3A 2A7 Canada Video submissions in addition to papers are encouraged.

ISIR '93 24th Int'l Symposium on Industrial Robots November 2-5, 1993, Tokyo. Submissions: 400 word abstract by Jan 31 to Secretariat of 24th ISIR, Japan Industrial Robot Association, Kikai Shinko Kaikan Bldg., 3-5-8, Shiba-Koen, Minato-ku, Tokyo 105, Japan. Tel.: +81 3 3434 2919; Fax: +81 3 3578 1404.

MATH MOD Vienna: Int'l IMACS Symposium on Mathematical Modelling. February 2-4, 1994, Vienna, Austria. Submissions: Abstract by May 1, 1993 to Univ. Prof. Dr. Inge Troch, Technische Universitaet Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria.
Call for Papers

IECON '93

Nineteenth Annual Conference of the IEEE Industrial Electronics Society
In Technical Co-Sponsorship with the Society of Instrument and Control Engineers of Japan (SICE)
November 15-19, 1993 • Hyatt Regency-Maui, Lahaina, Maui, Hawaii

IECON '93 is an International Conference on industrial applications of power electronics, controls, robotics, signal processing, instrumentation, automation, artificial intelligence, and emerging technologies. The objectives of the conference are to attract high quality papers and to promote professional interactions for the advancement of science, technology, and fellowship. The technical program will be organized around the following five conference themes (tracks):

POWER ELECTRONICS: Power electronics devices and systems, high frequency power converters, digital control of power electronics, energy systems, electrical drives, static var and harmonic compensations, and analytical and simulation methods.

ROBOTICS, VISION and SENSORS: Advanced robotics, intelligent sensors, machine vision and intelligence, actuators and motion control, micro electro-mechanical systems, multisensor fusion and integration, and autonomous mobile robots.

FACTORY AUTOMATION: Factory communications, flexible manufacturing, manufacturing system architectures, industrial automation, process automation, CAD/CAM/CAT/CIM, and LAN.

SIGNAL PROCESSING AND CONTROL: Advanced control and measurement, computer and microprocessor based control, data reduction and signal processing, estimation and identification techniques, instrumentation electronics, modeling and simulation, automotive electronics, human interface, software design and tools, and non-linear control and systems.

EMERGING TECHNOLOGIES: Industrial applications of neural networks, fuzzy systems, concurrent engineering, industrial applications of intelligent systems, artificial intelligence and expert systems, and intelligent mechatronics.

Submission of Papers: Submit an abstract and summary, formatted as follows. First page: title, authors, mailing address, telephone number, fax number, electronic mail address of each author, preferred topical area and subject area. Second page: title, authors, 100 word abstract. Third and succeeding pages: title, 1000-word summary, figures and references. The authors are encouraged but not required to submit full manuscript at the time of submitting the abstract and summary. Submit five copies of each, in English, to one of the following contacts:

Papers from N. and S. America:
Dr. C. J. Chen
AT&T Bell Labs
Room 3E226C
Whippany Road, P.O. Box 903
Whippany, NJ 07981-0903 U.S.A.
(201)386-3085 (office)
(201)386-2942 (FAX)

Papers from Europe, Middle East,
and Africa: (IEEE Region 8)
Prof. Javier Uceda
Universidad Politècnica
de Madrid
E.T.S. Ingenieros Industriales
Jose Gutierrez Abascal, 2
E-28006 Madrid SPAIN
34-1-411-7517 (office)
34-1-564-5966 (FAX)

Papers from Rest of World:
Dr. Takamasa Hori, Mie University
Department of Electrical and Electronics Engineering
Kamihama-Cho, Tsu City
Mie Prefecture, 514 Japan
81-592-32-1211 Ext.3850 (phone)
81-592-31-2252 (FAX)

Tutorials:
(All IEEE Regions)
Prof. Alfred C. Weaver
Dept. of Computer Science
Thornton Hall
University of Virginia
Charlottesville, VA 22903 U.S.A.
(804)982-2201 (office)
(804)982-2214 (FAX)

Special Sessions:
(All IEEE Regions)
Prof. Russell J. Niederjohn
Dept. of Elec. & Computer Engineering
Marquette University
Milwaukee, WI 53233 U.S.A.
(414)288-6820 (office)
(414)288-7082 (FAX)

Special Sessions and Tutorials: The conference will feature special sessions and tutorials on topics of special interest. To propose a special session, contact the Special Sessions Co-Chairmen and provide the session name and a list of 6-10 potential papers and authors. All Special Session papers will be reviewed. To propose a tutorial, contact the Tutorials Co-Chairmen and identify the topic, speaker, length of tutorial (half a day or full day), abstract of tutorial, and type of supporting materials (overheads, textbooks, handouts, etc.).

Paper Acceptance: Accepted papers must be presented at the conference within a 20-30 minute period. A paper submitted for consideration implies a commitment to present the paper in Hawaii. All conference participants, including authors and session chairpersons, must pay the conference registration fee and travel expenses. Papers submitted to IECON '93 will be considered for publication in the IEEE Transactions on Industrial Electronics upon request of the Author.

Author's Schedule:
Deadline for special sessions and tutorial proposals: February 15, 1993
Deadline for submission of paper summaries: March 8, 1993
Notification of acceptance: May 25, 1993
Deadline for submission of final manuscripts: August 14, 1993

General Co-Chairmen:
Robert J. Roman, IEEE IES
3885 Oak Rim Way
Salt Lake City
Utah 84109 U.S.A. 1515
(801)277-1456 (phone)
(801)277-1456 (FAX)

Takamasa Hori, Mie University
Department of Electrical and Electronics Engineering
Kamihama-Cho, Tsu City
Mie Prefecture, 514 Japan
81-592-32-1211 Ext.3850 (phone)
81-592-31-2252 (FAX)
The theme of the 1993 Conference is “Integration of Intelligent Robots with Automated Manufacturing Systems”. The aim of the Conference is to report and explore the technical advancement and achievement in the field of flexible automation including the coordination of intelligent robotics systems in automated manufacturing systems. The conference will provide a forum for the exchange of ideas and discussion of future directions in robotics and automation. The topics will include but are not limited to:

- Application of robotics and automation in industry, construction, agriculture, and medicine
- Application to nuclear, space, underwater and other hazardous environments
- Robot sensing, data integration, and sensor fusion
- Multisensory perception and workspace modelling
- Autonomous manipulation and mobility with sensing
- Robot group coordination
- Telerobotics and autonomous robots
- Modelling and performance evaluation of manufacturing and other discrete event systems
- Scheduling and control of manufacturing systems
- Analysis of manufacturing system dynamics
- Information engineering for CIM
- Concurrent design of products and automated manufacturing
- Micro-electro mechanical systems
- Control and dynamic analysis addressing unresolved robotic issues

ASSOCIATED TUTORIALS AND WORKSHOPS

Tutorial S1 (Sunday, May 2, 1993-8:30 AM to 12:30 PM): Friction in Robotic Manipulation and Assembly

Friction is responsible for both the upper and lower performance limits in manipulation and assembly. Significant progress has been and continues to be made in overcoming the challenges posed by friction. The purpose of this tutorial is to make accessible to the robotics community the current results from friction modeling, analysis and compensation as they relate to the planning and control of manipulation, grasping and assembly.

Friction occurs internally, in components such as transmissions, bearing and seals, as well as externally, through contact with the environment. Internal friction modeling, analysis and compensation techniques will be surveyed and classified by control task, machine component and lubricant. External friction modeling will also be covered along with the associated theory and analysis techniques for motion planning and control in dexterous manipulation, assembly and fixturing.

Organizers:
Pierre E. Dupont, Boston University
Brian Armstrong-Helouvy, University of Wisconsin

Speakers:
Brian Armstrong-Helouvy, University of Wisconsin
Mark Cutkosky, Stanford University
Pierre Dupont, Boston University
Robert Howe, Harvard University
Daniel Whitney, Charles Stark Draper Laboratory
Workshop S2 (Sunday, May 2, 1993-1:30 PM to 5:30 PM): Robotic Technologies for Environmental Restoration and Waste Management in DOE Nuclear Sites

Over the past two years, the Department of Energy (DOE) has launched a new robotic program for environmental restoration and waste management (ERWM) in the nuclear sites of this nation. The plan has placed emphasis on the development and standardization of the robotic technologies to be used broadly across all the areas of the ERWM operations. This emerging area of application has brought both challenge and opportunity to the robotics community. The purpose of this workshop is to familiarize the workshop attendees with this new program, the existing robotic technologies and new technologies needed by this ERWM program. Four topics will be presented by five experts in the area. The topics are:

a) Cross Cutting and Advanced Robotic Technology
b) Decontamination & Decommissioning Robotics
c) Robotic Technology for Waste Facility Operations
d) Laboratory Automation Techniques

Organizers:
Joe Byrd, University of South Carolina
Yuan F. Zheng, The Ohio State University

Speakers:
Joe Byrd, University of South Carolina
William Hamel, Oak Ridge National Laboratory
Raymond Harrigan, Sandia National Laboratory
Robert Hollen, Los Alamos National Laboratory
Clyde Ward, Westinghouse Savannah River Technical Center

Workshop S3 (Sunday May 2, 1993-8:30 AM to 5:30 PM): Workshop on Geometric Algorithms for Manufacturing

This workshop will focus on computational geometric algorithms for industrial manufacturing, including applications to assembly, fixturing, parts feeding and component design. The challenge is to formulate mathematical problems that make realistic assumptions and yet admit elegant solutions (e.g. with polynomial time complexity), or to prove that seemingly simple problems are intractable. Accordingly emphasis will be on well-posed problems with a direct bearing on low-level automation. For example, given an assembly of polyhedra, describe the set of translations that will separate the components (Wilson and Latombe). In the problem of a grid with P being a 2 1/2D rectilinear part whose cross-sectional polygon has edges all of length of 4 units or more, how many clamps are required to ensure form closure (Mishra)?

We will discuss work-in-progress and identify new research questions. Each speaker will review the necessary background and present recent results. In the remaining time, there will be an open discussion of new problems.

Organizer:
Ken Goldberg, University of Southern California
Speakers:
Randy Wilson, Stanford University
John Canny, University of California, Berkeley
Matt Mason, Carnegie Mellon University
Bruce Donald, Cornell University
Ken Goldberg, University of Southern California

Workshop S4 (Sunday May 2, 1993-8:30 AM to 4:30 PM): Force Display in Virtual Environments and its Application to Robotic Teleoperation

The purpose of this workshop is to review the state-of-the-art in force display problems in virtual environments and its applications to telerobotics. Virtual reality technology enables humans to enter realistic simulated environments through the senses. This provides a powerful tool for constructing a simulator for off-line task teaching systems for industrial robots and a predictive display used to solve the time delay problem in space telerobotic systems. When such display systems are used for robotics a force display function should be implemented in addition to a visual display function. The Workshop will discuss several topics concerning force display problems, including force display devices, virtual force calculation algorithm, force reflection method, tactile display teleprogramming using virtual environments, applications to space telerobot systems and macro-micro teleoperation.

Organizers:
A.K. Bejczy, Jet Propulsion Laboratory
Gerhard Hirzinger, DLR, Germany
Kazuo Tanig, Mechanical Engineering Laboratory, Japan

Speakers:
A.K. Bejczy, Jet Propulsion Laboratory
G. Burdea, Rutgers University
M. Bergamasc, Scuola Superiore S. Anna, Italy
K. Tanig, Mechanical Engineering Laboratory, Japan
M. Minsky, Media Laboratory, Massachusetts Institute of Technology
B. Hanaford, University of Washington
G. Hirzinger, DLR, Germany
R.P. Paul, University of Pennsylvania
M. Mitsuishi, University of Tokyo, Japan

Tutorial S5 (Sunday, May 2, 1993-8:30 AM to 4:30 PM): Force and Contact Control in Robotic Systems: A Historical Perspective and Current Technologies

Force and contact control has been a major subject since robotics was born as an academic research field. It has a wide range of practical applications, such as manufacturing, construction, and agriculture and many important research works continue to take place.

The goal of this tutorial is to put the state-of-the-art of force and contact control technologies in a coherent historical perspective and to show the audience a clear picture of them. This tutorial will expose application engineers to force and contact control, and provide an understanding of what can be done in the field. For researchers and students in robotics, this is an excellent opportunity to understand the historical perspective and identify future research problems.

Organizers:
Miomir Vukobratovich, Institut Mihajlo Pupin Beograd, Yugoslavia
Yoshihiko Nakamura, University of Tokyo, Japan

Speakers:
Alessandro DeLuca, Universita degli Studi di Roma "La Sapienza", Italy
J. DeSchutter, Katholieke Universiteit Leuven, Belgium
A. Goldenberg, University of Toronto, Canada
Neville Hogan, Massachusetts Institute of Technology
N. Kircanski, Institut Mihajlo Pupin Beograd, Yugoslavia
Harvey Lipkin, Georgia Institute of Technology
Yoshihiko Nakamura, University of Tokyo, Japan
Miomir Vukobratovich, Institut Mihajlo Pupin Beograd, Yugoslavia
Kenneth Waldron, The Ohio State University
Tsuneo Yoshikawa, Kyoto University, Japan
Workshop T1 (Thursday, May 6, 1993-8:30 AM to 5:30 PM):

Needs for Research in Cooperating Robots

This workshop will provide a forum for robotics researchers and users to discuss application requirements for cooperating robot systems as well as high-impact research agendas to meet these requirements. Discussion topics include: performance requirements for cooperating robots; mapping application requirements to multirobot system characteristics; benchmark experiments and performance characterization; and other issues in enabling technologies including multi-agent control, distributed sensory, and communications. There are few doubts as to the intellectual challenge associated with developing methodologies required to accomplish cooperation among multiple robots. Concerns, however, do exist as to the advisability or real need for cooperating robots from a practical point of view. Another often voiced-concern addresses the merit of research into cooperating robots when the reliable control of a single robot in a dynamic environment with uncertainties remains an area of active research for many groups.

Organizers:
Reinhold C. Mann, Oak Ridge National Laboratory
Shin-ichi Yuta, Tsukuba University, Japan

Speakers:
P. Eicker, Sandia National Laboratories
S. Holland, General Motors
D. Lavery, National Aeronautics and Space Administration
E. Mettala, Defense Advanced Research Project Agency
H. Asama, RIKEN
R. Arkin, Georgia Institute of Technology
A. Bangs, Oak Ridge National Laboratory
J. Crowley, LIFIA, France
P. Khosla, Carnegie Mellon University
L. Parker, Massachusetts Institute of Technology
J. Wang, University of California, Riverside
S. Yuta, Tsukuba University, Japan

Workshop T2 (Thursday, May 6, 1993-8:30 AM to 5:30 PM):

Assembly and Task Planning

This workshop provides an informal forum for researchers in industries, universities, and government laboratories to discuss recent progress and future research directions in assembly and task planning. Topics of interest include: CAD and geometric issues in assembly, tolerance analysis of assembly, evaluation functions for assembly design automation, stability analysis in assembly, automated assembly planning for maintenance, concurrent design and planning, reactive reasoning and planning, algorithmic and knowledge-based approaches to design and redesign, and implementation issues. Each speaker will deliver a short presentation, and the attendees will participate in an hour long discussion at the end of all the presentations.

Organizers:
Kesh Keshavan, Northrop
Luiz Homem de Mello, Jet Propulsion Laboratory
Sukhan Lee, University of Southern California
Damian Lyons, Philips Laboratory

Speakers:
Mark Cutkosky, Stanford University
Thomas de Fazio, Charles Stark Draper Laboratory
Luiz Homem de Mello, Jet Propulsion Laboratory

Kesh Keshavan, Northrop
C.S. George Lee, Purdue University
Sukhan Lee, University of Southern California
Damian Lyons, Philips Laboratory
A.A. Requicha, University of Southern California
Arthur C. Sanderson, Rensselaer Polytechnic Institute
David Strip, Sandia National Laboratory
Herb Voelcker, Cornell University
Jan Wolter, Texas A&M University

Tutorial T3 (Thursday, May 6, 1993-8:30 AM to 5:30 PM):

Miniature and Micro Robotic Machines: Technology, Design and Applications

The tutorial will focus on the area of micro robotics in order to identify fundamental unsolved problems and to stimulate research efforts in the required directions. The goals of the tutorial include: defining the field; presenting basic fabrication technologies; discussion problems related to subsystem design, system integration and control; and critically surveying present and future applications. The speakers have been selected based on their expertise in the field, and their ability to convey to the participants the feeling of collegiality across the disciplines.

Organizers:
Paolo Dario, Scuola Superiore S. Anna, Italy
Ronald Fearing, University of California, Berkeley
Toshio Fukuda, Nagoya University, Japan

Speakers:
Paolo Dario, Scuola Superiore S. Anna, Italy
Ronald Fearing, University of California, Berkeley
Toshio Fukuda, Nagoya University, Japan
Kris Pister, University of California
Isao Shimoyama, University of Tokyo, Japan
Jan Smits, University of Boston
Blake Hannaford, University of Washington
William Trimmer, Princeton University
Nico De Roij, University of Neuchatel, Switzerland

Tutorial T4 (Thursday, May 6, 1993-8:30 AM to 5:30 PM):

Behavior-Based, Reactive Robotic Systems

This tutorial will examine the need, rationale, motivation, and techniques available for developing real-time, behavior-based reactive control systems. In this paradigm, the immediate use of sensor data can be used to avoid the cumulative errors between abstract models of the world and the actual state of the world. The goal is to highlight the value of reactive behaviors with respect to the complexity of planning, the fidelity of model-referenced control and the flexibility in the system response to novel and unexpected circumstances. We will discuss the motivating influences for behavior-based robotics systems and its roots in neuroscience, psychology, and ethology. We examine the role of sensing and representation under this paradigm and describe how observation can be coupled directly to control. A survey of behavior-based systems is then presented with a critical analysis of each. Finally, examples derived from the Autonomous Robot Architecture (AuRA) at Georgia Tech related to mobile robot control, and the University of Massachusetts Laboratory for Preceptual Robotics work on reactive controllers for multifingered manipulators are presented.

Organizers and Speakers:
Ronald C. Arkin, Georgia Institute of Technology
Roderic A. Grupen, University of Massachusetts
Tutorial T5 (Thursday, May 6, 1993-8:30 AM to 5:30 PM)
Concurrent Engineering Approach and Application of AI to Manufacturing

This tutorial will focus on simulation, evaluation, and design of advanced manufacturing systems. It is expected that the tutorial will benefit people involved in designing, evaluating and implementing manufacturing environments. It will also be useful to researchers and graduate students engaged in study or research in this area. Topics to be covered include: Flexible manufacturing cells and systems, knowledge based simulation of FMS, modeling of manufacturing systems, manufacturing cell simulation and scheduling (including Petri-nets), blackboard architecture and cooperating expert systems. The tutorial will conclude with a case study.

Organizers:
G. Kovacs, Hungarian Academy of Sciences
N. Vishwanadh, Indian Institute of Science
I. Mezgar, Computer and Automation Institute, Hungary

Speakers:
G. Kovacs, Hungarian Academy of Sciences
N. Vishwanadh, Indian Institute of Science
I. Mezgar, Computer and Automation Institute, Hungary
A. Desrochers, Rensselaer Polytechnic Institute

Local Tours:

On Thursday, May 6, tours of local industry are planned. You will have the option of taking morning tours, afternoon tours, or both. The immediate Atlanta area is home to internationally recognized automobile assembly plants (Ford Taurus and G.M.), communications equipment (A T & T), food and beverage (Coca-Cola), and air frame (Lockheed Georgia) manufacturers. Consult the Advanced Program for final tour information and to reserve your place.

On Tuesday, May 4, tours of the Manufacturing Research Center, Material Handling Research Center, and the Graphics, Visualization and Usability Laboratory, all at Georgia Tech, will be provided. Convenient transportation (15 minutes) to and from the conference site will be provided.

ORDER FORM FOR 1993 VIDEO PROCEEDINGS

Mail to: Beth A. Murray, IEEE, 445 Hoes Lane, PO Box 1331, Piscataway, NJ 08855-1331, U.S.A.

☐ Send me the 1993 Video Proceedings of the International Conference on Robotics and Automation (HVO327-7 PCD)
 ($80 member price, $130 non-member), plus handling and sales tax if applicable (See below)
☐ Check here for PAL standard
☐ Please send me your catalog of videos and self-study courses

PAYMENT:

☐ I am an IEEE Member, Please bill me. Non-members must prepay.
☐ Check enclosed (payable in US dollars, drawn on a US bank)
☐ Charge my: ☐ Visa ☐ MasterCard ☐ American Express ☐ Diners Club

Acct. # ___ Exp. Date ____________

Sign Here to validate order ____________________________

Name ____________________________ Company ____________________________

Address __

☐ Overseas orders must ship air freight. Check here we'll charge you at cost.

FOR FASTEST SERVICE: Call Toll Free (in USA) 1-800-678-IEEE - FAX 908-981-9667 - Phone 908-981-1686
Handling Charges/Tax: For orders $75.01 to $100, add $6; $100.01 to $200, add $8; $200.01 and up, add $15. If you pay by check, you must add correct handling charges (and State sales taxes, in CA, DC, NJ and NY) to your payment. If you are invoiced, or charge your order, correct handling charges and tax will be added to your bill.
Registration Form

May 2-7, 1993
Atlanta Hilton and Towers
Atlanta, Georgia

Please complete and return this form (with your check made payable to “Robotics and Automation”) to:

- Robotics and Automation
 P.O. Box 3216
 Silver Spring, MD 20918, U.S.A.
 Telephone: (301) 942-6321
 FAX: (301) 942-1147

(Checks must be in U.S. Dollars drawn on a U.S. Bank)

Name:
Company:
Address:
City/State/Zip/Country:
Telephone No.:
FAX No.:
IEEE Membership Number:

Please register me as follows: (Circle appropriate fee)

<table>
<thead>
<tr>
<th></th>
<th>Member fee</th>
<th>Non-Member fee</th>
<th>Student fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conference</td>
<td>$230</td>
<td>$280</td>
<td>$110</td>
</tr>
<tr>
<td>Conference (plus Video)</td>
<td>$295</td>
<td>$345</td>
<td>$175</td>
</tr>
<tr>
<td>Tutorial S1 (half day)</td>
<td>$100</td>
<td>$125</td>
<td>$100</td>
</tr>
<tr>
<td>Workshop S2 (half day)</td>
<td>$100</td>
<td>$125</td>
<td>$100</td>
</tr>
<tr>
<td>Workshop S3 (full day)</td>
<td>$125</td>
<td>$150</td>
<td>$125</td>
</tr>
<tr>
<td>Workshop S4 (full day)</td>
<td>$125</td>
<td>$150</td>
<td>$125</td>
</tr>
<tr>
<td>Tutorial S5 (full day)</td>
<td>$125</td>
<td>$150</td>
<td>$125</td>
</tr>
<tr>
<td>Workshop T1 (full day)</td>
<td>$125</td>
<td>$150</td>
<td>$125</td>
</tr>
<tr>
<td>Workshop T2 (full day)</td>
<td>$125</td>
<td>$150</td>
<td>$125</td>
</tr>
<tr>
<td>Tutorial T3 (full day)</td>
<td>$125</td>
<td>$150</td>
<td>$125</td>
</tr>
<tr>
<td>Tutorial T4 (full day)</td>
<td>$125</td>
<td>$150</td>
<td>$125</td>
</tr>
<tr>
<td>Tutorial T5 (full day)</td>
<td>$125</td>
<td>$150</td>
<td>$125</td>
</tr>
<tr>
<td>Total</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

Please circle applicable fees for those sessions you desire to attend, then add together to determine total fee which should be included with your registration. For registration after April 20, add $50 late fee ($20 for students). Payment may be made by check in U.S. Dollars on U.S. Bank, or payment may be made by VISA, Master Card, or Eurocard. (Other credit cards are not acceptable)

Payments Enclosed $
Visa or Master Card No.:
Expiration Date:
Signature:

The tutorials and workshops include coffee breaks and notes. Conference registration includes the proceedings, coffee breaks and social functions. Student registration for the conference only (does not include social functions, but includes coffee breaks and proceedings). To qualify for student rate, students must be IEEE student members, and must not be employed full time. Students will be required to show their IEEE membership card when picking up their registration. Registration fees may be refunded in full if a written request is received before April 15. A 50% penalty charge will be levied on those who request a refund after that date and before April 30. After April 30 there will be NO REFUNDS. Late registration will be accepted beginning Sunday, May 2, 1993 at the Atlanta Hilton.

Note: The Conference plus video includes a copy of the video presentation which will be presented at the Conference video theater.

Hotel Registration Form

HOTEL REGISTRATION FORM

1993 IEEE INTERNATIONAL CONFERENCE ON
ROBOTICS AND AUTOMATION
Sponsored by the IEEE Robotics and Automation Society

May 2-7, 1993
Atlanta Hilton & Towers
Atlanta, Georgia

To guarantee your reservation, please enclose first night’s room+tax (to be credited to your account), or a credit card number in the space provided below. Failure to arrive on that day without notification will result in cancellation and forfeiture of deposit or, one night’s room charges will be billed to your credit card.

Name:
Company:
Address:
City/State/Zip:
Country:
Daytime Phone Number:
Fax Number:
Arrival Date and Time:
Departure Date and Time:

A block of rooms for this conference is reserved until April 3, 1993. Reservations will be accepted after this date based on availability of accommodations and will be confirmed at the convention rate.

Guest Room Rates
Single, Double, or Twin - Main Hotel $105 - Tower $130

Please indicate No. of rooms and whether tower and single, double or twin.