Welcome!

• Virtual Seminar Series organized by the IEEE Robotics and Automation Society (RAS) Technical Committee on Verification of Autonomous Systems (TC-VAS)
 – Today’s Format
 • 1 hour meeting featuring 2 presenters
 – Presenters
 • Today’s presenters are the Co-Chairs of the TC-VAS
 – Michael Fisher: “Steps to Verifying Autonomous Systems”
 – Dejanira Araiza-IlIan: “On Verification, Safety and Manufacturing in Industrie 4.0”
 – Future Meetings
 • Plan to hold future meetings monthly but at varying times to accommodate presenters’ time zones
 • Format is flexible - feedback on format is welcome
 • Please let us know if you’d like to present

• Other TC-VAS activities
 – Workshops
 • ICRA workshop has been submitted for IROS; will not be part of ICRA
 • Planning and participation announcements for future workshops will be sent out to the TC-VAS mailing list – please make sure you’re signed up!
 – Newsletter
 • Regular newsletter sent to the TC-VAS mailing list containing announcements and opportunities
 • Please submit content if there’s anything you’d like sent out to the group
IEEE TC-VAS

Verification of Autonomous Systems Seminar Series 2020

Autonomous Behavior Specification

Signe Redfield
May 7, 2020
U.S. Naval Research Laboratory
Defense-Centric Challenges

• Need to verify:
 – Safety
 • Known process in the formal verification community for some aspects of problem
 • Autonomous Systems: Safety of subject, safety of environment, safety of robot, safety of operator, safety of bystander – research focus typically on safety of subject (when “safety” explicitly considered) and safety of robot (during autonomy design)
 • DoD: More dangerous robot combined with more stringent guidance re: safety of environment, asset, bystander
 – Security
 • Known process in the formal verification community
 • Autonomous Systems: security typically near the bottom of the list of needs, well below “does it work”
 • DoD: Critical need
 – **Functionality**
 • **Autonomous System**: Critical problem not typically addressed by current verification tools
 • DoD: requires greater degree of certainty in some cases, can accept less in others.
 • Especially critical in the context of learning systems
 • Interesting to autonomous system designers in academic community

• Approval from users and stakeholders
 – Boils down to trust

• Academic Timescale
 – Verification Working Group has been active for 6 years
 • Have still only addressed a fraction of the challenges identified
Verification Summary (Functional Perspective)

• “Can it do the right thing?”
 – Not physically capable = don’t need to evaluate further
 – Stage where individual behaviors and their integration are evaluated

• “Does it do the right thing?”
 – Decision logic is wrong = having the right components doesn’t matter
 – Stage where we evaluate the system as a whole

• “What is the right thing, anyway?”
 – It does the wrong thing because we didn’t understand what it needed to do
 – Particularly problematic for autonomous systems
 • Lack theoretical tools to answer whether it can or does do the right thing
 • Process is more expensive and time-consuming than for more mature disciplines
Requirements Generation

• Example Challenge: “Where is the transition from specifying system requirements to designing the system and how are principled requirements developed so they do not devolve into designing the solution?"

• Autonomous behaviors
 – Designed to provide “good enough” actions when the precise desired action is unknowable at design time
 – Designed to handle edge cases
 – By definition, behavioral/functional specifications will be inadequate

• Aerospace community has done the most work on this
 – Typically constrained to less autonomous systems
 – Typically focused on system safety, security, and software design standards

Mousey the JunkBot, Im386 photovore (Braitenberg Vehicle)

Kristin Rozier, Asst. Prof., Iowa State Univ.
Structural Specification

Challenges

• User perspective is often wrong
 – Users will attempt to shoehorn autonomous system into existing tactical pigeonhole
 – New tactics typically required to restructure task to make autonomy an affordable/effective solution

• Funding goals are often unstable
 – Instability in performance goals and behavior specification - conflicting or changing user needs prevents the team from converging on an adequate technical solution within time and budget

• Likely to ask for things that can’t be done within schedule and budget, even when they are technically possible
 – New or modified hardware requires the same level of test and validation as new software
 – New behaviors are often necessary to support changes in environmental assumptions
 – Even adding a simple new behavior will require exponentially more testing and verification to explore the impacts of integrating it to an increasingly complex system

• Problem across all engineering disciplines, exacerbated by lack of verification tools for autonomous systems

Old MCM:

- SCM
 - Sensor Waypoints
 - Retrieve for human analysis

- RID
 - Pre-programmed patterns
 - Retrieve for human analysis

- N
 - Pre-programmed actions

Sample MCM with autonomy:

- SCM/RID
 - AUVs perform SCM/RID task, periodically returning data for human verification

- N
 - Human verifies valid target
 - ASVs add target to list, negotiate with SCM/RID vehicles to schedule actions
 - ASVs deploy neutralizers
Evaluation

• How do we evaluate system performance? Under what circumstances?
 – Generally behavior designers don’t discover the definition is incorrect until testing starts and the environment produces new edge cases

• Revisiting the behavior specification is costly and time-consuming
 – Is there a way to define the assumptions more clearly in the beginning?

No-one expects rain in a gymnasium except the person who caused it
Solutions: Ontology Standards

• Improved specifications through ontology standards
 – Future tool – definition of task ontology drives details of structure and information necessary to adequately specify a task so a robot can perform it
 – Act of specification drives improved understanding necessary for model checking approach
 • Potential to reduce cost of model checking
Solutions: Capability Representation
Solutions: Capability Analysis Tables

- Design approach-independent method for analysis of AI and autonomous behavior integration and implementation
 - Supports integration, explainability / debugging, documentation, and verification of autonomous and AI-based systems
- Capability Analysis Tables = Connective Tissue
 - Task specification drives table contents
 - Table connects platform elements to behavior design elements
 - Table drives generation of sub-task/behavior specifications
Conclusions

• Specification of autonomous behavior is a problem
 – Users are wrong; designers are wrong; program managers are wrong
 – We lack tools
 – We have difficulty expressing and capturing realistic constraints on use cases

• We are making headway on developing tools to support specification development
 – Anything that forces the user and designer to think through their assumptions and form logically complete designs is helpful
 – Working to develop mechanisms to express autonomy specifications
 • Ontologies provide required concepts
 • Capability Representation organizes those concepts and provides framework for detailed specification
 • Capability Analysis Tables connect the specification to the design and the hardware and enable simple visual checks
Questions?