On verification, safety and manufacturing in Industry 4.0

Dejanira Araiza Illan
Assistant Principal Engineer
Johnson & Johnson
Disclaimer

The following slides were prepared by Dejanira Araiza Illan in her personal capacity. The opinions expressed in these slides are the author’s own and do not reflect the view of Johnson & Johnson.
Current Technologies for Manufacturing in Asia Pacific (APAC)

- Not 100% automated = robots + humans in sequential processes and same spaces
 - Robotic/automated machine process --- human process
 - Human process --- robotic/automated machine process
 - Repairing used components = mostly human
 - Logistics = mostly human
Current Technologies for Manufacturing in APAC

- Collaborative robots (no cages) on shopfloors

- AIVs (but very few)

- Safety certification --- limiting allowed autonomy: lack of expertise, no knowledge on techniques and tools for V&V, safety concerns for autonomous systems (fear of accidents)
Industry 4.0 Meaning

Technologies based on:
- Connectivity
- Increased automation (autonomous robots)
- Improved communication
- Self-monitoring/automated sensing
- Autonomous analysis and diagnosis

Also leading to technologies based on:
- Cloud computing
- Simulation/ mixed reality

More specific examples on next slides…
(Near) Future Technologies for Manufacturing in APAC

- Smart collaborative systems that guarantee safety and allow close interaction, e.g. operator tracking systems, smart system reaction/behaviour

- Verification and validation challenges:
 - Suitable tools for machine learning for vision and sensing, and scalability if in the cloud
 - Describing emergent system behaviours with formal languages that accept a range of resulting behaviours

From a 2020 paper: https://link.springer.com/chapter/10.1007/978-3-030-29131-0_8
(Near) Future Technologies for Manufacturing in APAC

- Modular flexible manufacturing systems
 - Can perform a variety of processes
 - Allow intuitive robot programming or learning skills from library
 - Plug and play
 - Reduce costs and customization of automated solutions
 - Scalable solutions to solve future needs for mass customization

- Verification and validation challenges:
 - Safety system design for any application (allowed closeness for human-robot interactions, interpretation of readings, maximum/minimum safe speeds, safety zones, etc.)
 - Safety certification for multiple (any) applications
 - Scalability
(Near) Future Technologies for Manufacturing in APAC

- Hardware and software that interacts together in complex robotic ecosystems (e.g. through middlewares and cyber-physical systems)

- Verification and validation challenges:
 - How to implement runtime monitors/sensing that can observe everything for safety
 - How to model all the complex interactions for all the components
 - Security issues (due to network connectivity and scalability)
 - Suitable safety standards for equipment-equipment-person interaction
(Near) Future Technologies for Manufacturing in APAC

- Open source software and robots using ROS and ROS 2 in industrial applications
- Cloud robotics using ROS/ROS2
- Verification and validation challenges:
 - Certification of open source code for robotics (guidelines or standards for code for safe human-robot interaction)
 - Tools suitable for machine learning and cloud computing (online and offline)
 - Verification for security (e.g. ROS 2 DDS protocol implementation)
 - Education on how to develop high quality open source code
- Mindset change is required to invest in open source technologies to make them more reliable and useful
Summary of Verification and Validation Challenges to Explore

- Certification of AI and autonomous systems in the wild = industrial adoption
- First adoption of technologies and proven safe = future widespread adoption
 - Who is going to be first?
- Education on verification and validation tools and challenges is necessary for industry
 - To gain investment for developing tools and techniques
 - Use cases, insights, expertise to enhance existing tools, formal languages, etc.
 - Design for verification, implementing runtime verification
- Scalability in real life: from one robotic cell to many dynamic and interconnected, flexible industrial systems in the same warehouse
- New verification and validation guidelines are needed for autonomous systems in any setting (besides industry)
Thank you!

Contact:

deanira.araiza.i@gmail.com