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Learning Enabled Autonomous Systems

* Increased complexity in capability is driving a move towards increasing
levels of autonomy

~> safety related consequences / require higher levels of integrity

« Al systems that use Convolutional Neural Networks (CNNs)
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Adversarial Examples

« An adversarial example is an input that is mislabeled by a neural network
after a minor, perhaps imperceptible, perturbation
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Neural Network as A Functional Component
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(RQ1) Can the system as a whole be resilient against the deficits
discovered over the learning components?

(RQ2) Is there new uncertainty needed to be considered in terms of
the interaction between learning and non-learning components?



A Real-World Vehicle Tracking System

* The tracking system includes detecting multiple ground venhicles over the
high-resolution Wide Area Motion Imagery (WAMI)

e Architecture of the vehicle detector
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Reliability Testing Framework

> DeepConcolic

Kalman Vehicle
Filter i Tracking

WAMI System |

« We use the DeepConcolic to generates test cases and adversarial examples
for CNNs following the MC/DC test conditions.



Examples

 Original detected tracks from the tracking system




Examples

« Distorted tracks found by DeepConcolic testing




RQ1

« By only testing the deep learning component it may not be sufficient to
mislead the overall tracking system.

« Adversarial tracks (red) after testing different parts of the original track
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RQ2

« Changing more frames does not necessarily result in larger deviation
from the original track.
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YES!

Can you prove that
the system is safe?
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Robusthess vs Resilience

« Robustness is an enforced measure to represent a system’s ability to
deliver its expected functionality by accommodating
disturbances to the input.

» Resilience indicates an innate capability to sufficient functionality
in the face of challenging conditions against risk or uncertainty, while
keeping a certain level of vitality and prosperity.
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Resilient But Not Robust
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Loss of Resilience

Deviation
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Formalism

 Robustness

min adversary payoff

S.t. diff (original_path, adversarial_path) > €., ,sthess
» Resilience B

min distance (original_path, adversarial_path)

S.t. diff (original_destination, adversarial_destination) > €, .qiicnce
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WAMI Tracking as A Labelled Transition System

@ * The root node on top represents the initial
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Solutions

 Verification
— Exhaustive search for all possible tracks

e Heuristic
— At each step, select the most distant adversarial state
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Results: Verification

 Attack the original track from time step k =6to k =8




Results: Verification vs Heuristic

« Sample 100 tracks of length 20

« Attack 1 to 4 WAMI frames S
Time in seconds

e

Algorithm Eavg T dist Probability of

Finding Best Adv. Track
heuristic search  0.63 78 | 93

verification 0.65 3465 117 / 100 %

The heuristic finds optimal solutions in 80% cases
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Defence

1. Uncertainty monitoring
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2. Joint Kalman filters



THANK YOU!
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« Materials for this work are publicly available
https://qgithub.com/havelhuang/wami detector resilience verification
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