Distinguished Lecturers

To request a Distinguished Lecturer (DL) for your next event, complete the DL Application Form. For more information or to see the full list, go to the Distinguished Lecturers page.

Sarthak Misra portrait
Sarthak Misra
Micro/Nano Robotics & Automation
University of Twente
Enschede, Netherlands
RAS Geographic Region 2

Sarthak Misra joined the University of Twente in 2009. He is currently a Full Professor in the Department of Biomechanical Engineering. He is also affiliated with the Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen. Sarthak obtained his doctoral degree in the Department of Mechanical Engineering at the Johns Hopkins University, Baltimore, USA. Prior to commencing his studies at Johns Hopkins, he worked as a dynamics and controls analyst at MacDonald Dettwiler and Associates on the International Space Station Program. Sarthak received his Master of Engineering degree in Mechanical Engineering from McGill University, Montreal, Canada. He is the recipient of the European Research Council (ERC) Starting and Proof-of-Concept grants, Netherlands Organization for Scientific Research (NWO) VENI and VIDI awards, Link Foundation fellowship, McGill Major fellowship, and NASA Space Flight Awareness award. He is the co-chair of the IEEE Robotics and Automation Society Technical Committee on Surgical Robotics, and area co-chair of the IFAC Technical Committee on Biological and Medical Systems. Sarthak’s broad research interests are primarily in the area of applied mechanics at both macro and micro scales. He is interested in the modeling and control of electro-mechanical systems with applications to medical robotics.

Talk # 1

Wireless Control of Miniaturised Agents

Medical robotic systems strive to make surgical interventions less invasive, less risky for both patients and clinicians, more efficient, and capable of achieving better patient outcomes. Increasing the targeting accuracy during robot-assisted minimally invasive surgical procedures requires the integration of pre-operative plans and intra-operative control. In this talk, I will discuss how wirelessly controlled agents might offer advantages in terms of reduced invasiveness and untethered access to deep-seated regions within the human body. On that account, this talk covers the closed-loop control of microparticles, miniaturised hydrogel grippers, microjets, and magnetosperms.

Show More
Micky Rakotondrabe portrait
Micky Rakotondrabe
Micro/Nano Robotics & Automation
FEMTO-ST, Besancon, France
Université Bourgogne Franche-Comté, Besancon, France
RAS Geographic Region 2

Micky Rakotondrabe has been an associate professor since 2007 at the Université Bourgogne Franche-Comté with research appointment at FEMTO-ST institute. His research fields deal with the design, modeling, signal estimation and control techniques for piezoelectric systems with applications on microrobotics and automation at small scale. He is the founder and head of the MACS (methodologies for the design and control of mechatronic systems) research group at FEMTO-ST and of the GREEM (control for green mechatronics) international master at the Université Bourgogne Franche-Comté. He obtained the Université de Franche-Comté 2006 best-phd-thesis finalist; the IEEE-ICARCV-2006 best-paper-award finalist, the IEEE-CASE-2011 best-application-paper-award finalist and the 2011 Romanian-Scientific-Activity-Award. He holds the French-Excellence-Activities-Award since October 2011. He participated to the control of the French-team mobile microrobot that holds several times the IEEE-NIST Mobile Microrobot International Challenge Awards (1st prize on speed in 2010, 2011 and 2012). The paper 'Complete open loop control of hysteretic, creeped and oscillating piezoelectric cantilever' was among the 5 most cited papers of the IEEE Transactions on Automation Science and Engineering of the 2013 year. In 2016, he received the Big-On-Small award which is to recognize a young professional with excellent performance and international visibility in the topics of manipulation, automation and robotics at small scales.

Talk # 1

Piezoelectric systems for small scale tasks: design, modeling, control and signal estimation

Piezoelectric materials have strong recognition in the development of actuators, systems and microrobots devoted to work at small scale. This recognition is thanks to their high resolution (down to nanometer), high bandwidth (in excess of the kiloHertz), high force density for certain piezomaterials, ease of integration (driven by electricity), and physical reversibility (usable for sensors or for actuators). In counterpart, piezoelectric systems exhibit low deformation (classically 0.1%), they suffer from nonlinearities and some of them exhibit badly damped vibration. These behaviors drastically damage or degrade the final tasks to be executed, such as precise positioning, imaging or manipulation. This talk describes first my works on the developments of piezoelectric systems that account for these limitations during the design. Then, I present their modeling for control purpose in order to reach certain severe performances when working at small scale. Because measurement is essential in control, I finally present some measurement and estimation techniques among which self-sensing approach is one of the feature for piezoelectric systems. In the meantime I will highlight how measurement is still a great challenge in automation at small scale due to the lack of convenient sensors.

Talk # 2

Control with sensors minimization in piezoelectric systems working at small scale

Piezoelectric materials have strong recognition in the development of actuators, systems and microrobots devoted to work at small scale. This recognition is thanks to their high resolution (down to nanometer), high bandwidth (in excess of the kiloHertz), high force density for certain piezomaterials, ease of integration (driven by electricity), and physical reversibility (usable for sensors or for actuators). In counterpart, piezoelectric systems exhibit low deformation (classically 0.1%), they suffer from nonlinearities and some of them exhibit badly damped vibration. These behaviors drastically damage or degrade the final tasks to be executed, such as precise positioning, imaging or manipulation. In this talk, the challenge in controlling piezoelectric systems working at small scale is discussed. Their control and automation suffer from the lack of convenient and embedded sensors to complete the real-time measurement and feedback. The first part of the talk deals with an alternative feedback control architecture based on the piezoelectric self-sensing approach. This approach permits a real-time and fully embedded measurement, or almost. In the second part, open-loop or feedforward control architecture for piezoelectric systems is presented. The advantage of this approach is its full integration and its low cost, though robustness could be compromised in some case.

Show More
Yajing Shen portrait
Yajing Shen
Micro/Nano Robotics & Automation
City University of Hong Kong
Hong Kong, China

Dr. Yajing Shen received the PhD degree in 2012 from Fukuda Lab., Nagoya University, Japan, and he is working as Assistant Professor in Mechanical and Biomedical Engineering Department in City University of Hong Kong currently. His mainly research interest is micro/nanorobotics, including the micro/nano robots development and their applications in the fundamental and practical problems in biomedical, material, and other emerging fields. He has published ~100 papers in international journal/conference, and received serval awards, including the Best Manipulation Paper Award in IEEE International Conference on Robotics and Automation (ICRA) in 2011, the IEEE Robotics and Automation Society Japan Chapter Young Award in 2011, the Early Career Awards of Hong Kong UGC in 2014, Big-on-Small Award at MARSS 2018. He is a Senior Member of IEEE and an Executive member of China Micro-nano Robotic Society, and is very active in promoting micro/nano robotics to society, such as by serving as the committee member of international conference, organizing “micro/nano robot” workshop, special issue, and so on.

Talk # 1

Micro-Nano Robotic Systems in Biomedical Applications

Robotics have played important roles in biomedical applications owing to its advantages in precision, stability, dexterity and productivity. With the rapid development of micro-nano technology, the micro-nano robotic systems have received increasing attentions in recent years, which can be classified to two different categories according to their working principles and functions: (1) the robots can operate object with micro-nano scale resolution. (2) the robot is of micro-nano scale size. This talk will give two specific examples to demonstrate the above two types of robotic system in biomedical applications, i.e., one is the robot-aided high precision nano characterization system, and the other is the bio-inspired miniature robots. Lastly, the prospects of the micro-nano robotic systems will be discussed.

Show More